
OPINION 
 

CURRENT SCIENCE, VOL. 108, NO. 5, 10 MARCH 2015 777 

development involving simultaneous tar-
geting of several proteins, it then be-
comes a different ball game requiring 
large organization and funds. That phase 
does not come under the purview of the 
present discussion. In any case, drug  
development is not the only use of in-
hibitors. They are indispensable tools in 
biological research. Therefore, designing 
of inhibitors is an intrinsically worth-
while exercise, quite apart from its utility 
in drug development. 

Conclusion 

As indicated earlier, detailed structural 
information on a large number of proteins 
from different pathogens is now available 
in Indian laboratories. This is particu-
larly true in relation to M. tuberculosis. 

The time is now propitious to initiate 
concerted efforts in the area of structure-
based inhibitor design. Efforts with  
emphasis on validated targets should cer-
tainly be encouraged. In addition, it is 
also important to support the more holis-
tic approaches of the type outlined 
above. Apart from other things, there is a 
crying need to develop drugs for infec-
tious diseases, including TB. India now 
has the competence to contribute sub-
stantially to addressing this need. In this 
note, I have focused on structure-based 
efforts, as I am particularly familiar with 
them. Our efforts in this area should in-
volve proven paradigms as well as modi-
fied or new paradigms. In the present 
context, the adage ‘let a hundred flowers 
bloom and let a hundred ideas contend’, 
should guide us. 

 

1. Vijayan, M., Curr. Sci., 2003, 85, 878–
885. 

2. Kumar, R. A., Vaze, M. B., Chandra, N. 
R., Vijayan, M. and Muniyappa, K., Bio-
chemistry, 1996, 35, 1793–1802. 

3. Bachhawat, N. and Mande, S. C., J. Mol. 
Biol., 1999, 291, 531–536. 

4. Datta, S. et al., Nucleic Acids Res., 2000, 
28, 4964–4973. 

5. Arora, A. et al., Tuberculosis, 2011, 91, 
456–468. 

6. Chidambaram, R., Curr. Sci., 2007, 92, 
1229–1233. 

7. Ramakrishnan, T. and Chandrasekhar, P., 
J. Biosci., 1999, 24, 143–152. 

 
 

M. Vijayan is in the Molecular Biophys-
ics Unit, Indian Institute of Science, 
Bengaluru 560 012, India. 
e-mail: mv@mbu.iisc.ernet.in 

 
 
 

Is ‘compiler construction’ a dead subject? 
 
Pinaki Chakraborty 
 
It will not be an exaggeration if I say that 
today we live in the age of computers. 
We are surrounded by computers and 
other programable devices. Almost all 
software programs that run on these  
devices are written in high-level progra-
ming languages like C, C++ and Java. 
These programing languages allow soft-
ware developers to specify what the pro-
gram is supposed to do in a human 
intelligible form. This property of the 
high-level programing languages makes it 
convenient for software developers to 
write and debug programs. Unfortu-
nately, computers understand none of 
these high-level programing languages. 
A computer can only run a program writ-
ten in its machine language. A machine 
language is a machine-specific low-level 
language, and is difficult to understand 
and use by software developers. So, a 
special type of software program called 
compilers is used to bridge the gap be-
tween the high-level programing lan-
guages and the machine languages. A 
compiler translates a program written by 
a software developer in a high-level pro-
graming language into machine lan-
guage. 
 The first realistic compiler was deve-
loped by a team led by John W. Backus in 
1957. That compiler translated programs 

written in the FORTRAN (FORmula 
TRANslation) programing language into 
the machine language of the then latest 
IBM 704 computers. When the develop-
ers were commissioned to develop that 
compiler, they hardly had any idea of the 
difficulty of the project which they ex-
pected to complete within six months. 
However, they ended up consuming two 
and half years of time and 18 man-years 
of effort to complete the project. Their 
experience taught two important lessons 
to the computer science community. 
First, compilers are complex programs 
and a subject called ‘compiler construc-
tion’ should be formally established. 
Second, and more importantly, compilers 
are useful software programs that can 
revolutionize the art of computer pro-
graming. Serious research and repeated 
development activities over the years 
have by now standardized the structure 
and the internal working of compilers. 
However, both high-level programing 
languages and computer architectures have 
been evolving continuously since 1957. 
Consequently, compilers have been 
forced to evolve too. 
 A few years ago while studying at 
Jawaharlal Nehru University, I once heard 
a senior professor from another premier 
university in India, who was delivering 

an invited talk in a conference in our 
university, make a passing remark that 
nobody works on compilers anymore. So, 
is compiler construction a dead subject? 
Courses on compiler construction  
are taught in both undergraduate and post-
graduate-level computer engineering 
programs in most universities in India. 
However, these courses are often taught 
in a dry and uninteresting manner with 
either little or absolutely no laboratory 
support. Moreover, hardly anybody does 
research on compilers in India. However, 
things are quite different abroad, espe-
cially in the top universities. There are 
active research groups working on com-
pilers. Courses on compiler construction 
are taught based on a programing exer-
cise. This programing exercise is often 
the largest and the most sophisticated 
program that computer engineers write in 
their student life. 
 There are quite a few reasons for 
studying compiler construction and  
researching compilers. A decent know-
ledge of compilers helps software deve-
lopers to write programs with desired 
characteristics like small size when 
translated into machine language, less 
running time, better fault tolerance and 
low power consumption. For programs 
that will be used many times by multiple 



OPINION 
 

CURRENT SCIENCE, VOL. 108, NO. 5, 10 MARCH 2015 778 

users, a small percentage of decrease in 
either running time or power consump-
tion is quite an achievement. When it 
comes to research, a thorough knowledge 
of compilers is essential for developing a 
new programing language. In fact, new 
programing languages are developed and 
new features are added to existing pro-
graming languages regularly. Knowledge 
of compilers is also useful in developing 
new computer hardware. It is more bene-
ficial to develop hardware utilities which 
can be used efficiently by the machine 
language programs generated by the 
compilers. This holds true for all types of 
programable devices, including personal 
computers, embedded systems and su-
percomputers. This concept was actually 
used in developing the reduced instruc-
tion set computers (RISC), which were 
much simpler but almost as powerful as 
their predecessors. As a result, there are 
some journals and conferences dedicated 
to compilers and related topics. 
 I will like to discuss some interesting 
facts and figures. The A. M. Turing 
Award is considered to be the most pres-
tigious award in the field of computer 

science. This award is given to an indi-
vidual or a small clique of collaborators 
for pioneering research in computer sci-
ence every year since 1966. Till date, 
five scientists have received this award 
primarily for their work on compilers – 
Alan J. Perlis (1966), John W. Bakus 
(1977), John Cocke (1987), Peter Naur 
(2005) and Frances E. Allen (2006). In 
fact, Allen is the first woman to receive 
this award. There are some other recipi-
ents of this award who have also worked 
on compilers among other things, like 
Edsger W. Dijkstra (1972), Donald E. 
Knuth (1974), Robert W. Floyd (1978), 
C. A. R. Hoare (1980) and Richard  
E. Stearns (1993). Some others have  
received this award for developing new 
high-level programing languages (Table 
1). The fact that so many prominent sci-
entists chose to work on compilers shows 
its importance in computer science. 
 At the international level, there are 
several objectives of research on compil-
ers today. Three such objectives warrant 
special mention. First, the most impor-
tant objective is to develop compilers 
that can efficiently translate new  

programing language features which can 
better represent the thought processes of 
the software developers into machine 
language. Designing new programing 
language features is a continuous process 
helping in the evolution of programing 
languages. Second, is to develop compil-
ers that will be able to generate machine 
language programs which will take 
maximum advantage of the parallel pro-
cessing capabilities of multi-core proces-
sors in personal computers and multiple 
processors in supercomputers. Third,  
developing compilers which will be able 
to generate low power consuming  
machine language programs for mobile 
phones and other battery-powered pro-
gramable devices. 
 It is important to start working on 
these topics in India too. Research 
groups devoted to compilers should be 
established here. Both short- and long-
term research and development projects 
should be initiated. Partnerships between 
academia and industry should be encour-
aged. The Indian IT industry, in contrast 
to its international counterparts, has not 
made any major contribution to compiler 
research. Research on compilers and 
programing languages, although re-
source-consuming, will prove beneficial 
in the long run. However, to support  
research on compilers, it is first neces-
sary to improve the way ‘compiler con-
struction’ is taught in India. 
 
  

Pinaki Chakraborty is in the Division of 
Computer Engineering, Netaji Subhas 
Institute of Technology, New Delhi 
110 078, India. 
e-mail: pinaki_chakraborty_163@ 
yahoo.com 

 
 
 
 
 
 
 
 
 
 
 

Table 1. Scientists and new programing languages developed by them 

 Programing Year of receiving 
Scientist language Turing Award 
 

John McCarthy Lisp 1971 
Allen Newell and Herbert A. Simon IPL 1975 
John W. Backus Fortran 1977 
Kenneth E. Iverson APL 1979 
Dennis M. Ritchie C 1983 
Niklaus E. Wirth Pascal 1984 
A. J. R. G. Milner ML 1991 
O.-J. Dahl and Kristen Nygaard Simula 2001 
Alan C. Kay Smalltalk 2003 
Peter Naur Algol 2005 

 


