
SPECIAL SECTION: THEORY OF COMPUTATION

CURRENT SCIENCE, VOL. 106, NO. 12, 25 JUNE 2014 1669

*e-mail: shyam@tifr.res.in

Foreword
Alan M. Turing is arguably the most influential person who shaped the domains of computing, artificial intelligence
and digital forecast. The computing community worldwide celebrated 2012 as Alan Turing year to honour his contribu-
tions and celebrate his lasting scientific influence on computing and the impact of computing on science and society.
Indian Academy of Sciences held a special session on 3 November 2012 during its 78th Annual Meeting in Dehradun.
The session had the following presentations: R. K. Shyamasundar (TIFR): Computing legacy of Alan Turing; Manin-
dra Agrawal (IIT, Kanpur): Turing machines and the development of complexity theory; Ramesh Hariharan (Strand
Genomics Ltd): Patterns in biology and the program of life; V. Arvind (IMSc): Algorithmic randomness, real numbers
and computability.
 Current Science decided to publish a special section in honour of Alan Turing to provide his scientific influence to
its readers. The section consists of the following papers: The computing legacy of Alan M. Turing by R. K. Shyama-
sundar; Turing and animal coat patterns by Ramesh Hariharan; Normal numbers and algorithmic randomness: a his-
torical sketch by V. Arvind; A brief history of polynomial identity testing by Manindra Agarwal. Even though this
paper was not presented at the symposium, it has been included as it traces the link of the important problem with the
complexity theory that was highly influenced by Turing’s work. The last paper by Jaikumar Radhakrishnan is an
excerpt of his interview with people that included Stephen A. Cook (a distinguished computer scientist and a Turing
Laureate, University of Toronto), Rohit Parikh (a distinguished logician, CUNY) and Manoj Gopalakrishnan (TIFR)
that highlights impact of Turing’s work from different perspectives. R. K. Shyamasundar

The computing legacy of Alan M. Turing
(1912–1954)

R. K. Shyamasundar*
School of Technology and Computer Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India

Alan Turing is considered one among the 20th cen-
tury’s 100 greatest minds. The invention of stored-
program universal computer by him, is arguably the
most influential mathematical abstraction of the 20th
century that changed the whole world for good. While
this invention became one of the cornerstones of com-
puter science, Turing was best known during his time
as the genius who broke some of Germany’s most
secret codes during the war of 1939–45. His inventions
and discoveries covered a wide spectrum of areas like
logic and computability, cryptology, computer archi-
tecture, artificial intelligence, digital forecast, chemi-
cal morphogenesis, algorithm randomness. While he
was a theoretician’s theoretician, he had an immense
practical outlook with a deep understanding of com-
puting, including its impact on science and society. In
this article, some of his pioneering contributions shall
be highlighted in an accessible way.

Keywords: Artificial intelligence, automatic computing
engine, computing legacy, universal computers.

Of the finest types of intelligence – human, artificial, and
military – Turing is perhaps the only person to have
made a world-changing contribution to all three.

Nature, Editorial, 2012

Introduction

IN 1999, Time magazine named Alan M. Turing among the
20th century’s 100 greatest minds that included Albert
Einstein, Wright brothers, Crick and Watson, as well as
Alexander Fleming. Alan Turing a true pioneer, laid the
foundations for digital computer, artificial intelligence, and
made an astonishing forecast for the information age. He
made pioneering contributions with respect to

a. Universal model of computation
b. Alan Turing’s system of logic
c. Automatic computing engine (ACE)
d. Artificial intelligence
e. Forecast for the information age
f. Turing numbers – an instance of a fundamental entity

in the theory of algorithmic randomness
g. A chemical basis for morphogenesis.

In this article, we shall cover (a) in some detail, followed by
highlights from (b) to (e). We will not be touching upon
(f)–(g) further in this article. Turing’s legacy extends to
other areas like biological pattern formation, limits of com-
putation in physics, etc. All these achievements happened
in his short lifespan of 42 years (Figure 1).
 During his lifetime, Turing was known more as a genius
who broke some of Germany’s secret codes created by
encrypting machines called ENIGMA that was responsible

SPECIAL SECTION: THEORY OF COMPUTATION

CURRENT SCIENCE, VOL. 106, NO. 12, 25 JUNE 2014 1670

Figure 1. Alan M. Turing, the marathon runner.

for halting the war early. His overall contributions and im-
pact can be seen aptly in the summary suggestion by the
Editorial in Nature to declare the Alan Turing’s centenary
year as ‘The Year of Intelligence’, as the Editorial says
‘Turing is perhaps the only person to have made a world-
changing contribution to all the finest types of intelligence:
human, military and artificial.’

Universal model of computation

In this section, we shall discuss the model of computation
to convey underlying reasons as to why it has become the
foundation of computer science.

Turing machine model of computation

Turing got exposed to the famous Hilbert’s Entschei-
dungsproblem (the decision problem) in his undergradu-
ate course at King’s College, Cambridge by M. H. A.
Newman. Following Leibniz’s mechanical calculating
engine, Hilbert dreamt that

 All mathematical formalisms should be encoded in

some suitable logical formalism.

 An algorithm (or an effective procedure) needs to be
arrived for determining the truth therein.

In logical terms, the question was: Whether there exists
an effective method to decide, given a well-founded
formula of the pure first-order predicate (note 1) calculus,
whether or not its negation is satisfiable in some interpre-
tation.
 As Turing thought about the question, he was quite
convinced that there cannot be any such procedure. One
of the main hurdles for progress was the lack of defini-
tion of finite procedure/effective procedure/algorithm. He
succeeded (note 2) in arriving at such a notion of effec-
tive procedure that it not only met the intuition that an
effective procedure or an algorithm is nothing but a finite
sequence of instructions that can be carried out mechani-
cally, but also was mathematically precise.
 He realized the above through the definition of a
simple abstract mathematical machine1,2 which has come
to be known as Turing machine (TM) (Figure 2). We
shall describe these in the sequel.
 A TM is a primitive computation model essentially
consisting of ‘an unlimited memory capacity obtained in
the form of an infinite tape marked out into squares, on
each of which a symbol could be printed. At any moment

SPECIAL SECTION: THEORY OF COMPUTATION

CURRENT SCIENCE, VOL. 106, NO. 12, 25 JUNE 2014 1671

there is one symbol in the machine; it is called the
scanned symbol. The machine can alter the scanned
symbol and its behavior is in part determined by that
symbol, but the symbols on the tape elsewhere do not
affect the behavior of the machine. However, the tape can
be moved back and forth through the machine, this being
one of the elementary operations of the machine. Any
symbol on the tape may therefore eventually have an
innings1.’ The graphical diagram denotes a typical TM
with the finite state control along with the tape and tape
head. In other words, the operations that this machine can
perform be described as follows:

Based on the state of the finite state control and the
symbol under the read-scan head of the machine, it can
move to another state (finite state control consists of
finite nonempty set of states), change the symbol to any
other symbol, and the scan head can perform any one of
the following three moves: (1) move to the left by one
square, (2) remain stationary, or (3) move to the right
by one square.

It must be clear from the above description the movement
of the machine is completely determined by the symbol
under the scan head and the state of the finite state
control.

Example: Consider a simple example of adding two
numbers, say m and n. Given n and m on the tape, the TM
machine should yield n + m on the tape and halt.
 Before we consider the description of the above
machine, let us fix a notation required for the description
of the TM.

Notation

1. Number n will be represented in unary and hence will

be denoted by n + 1, ‘1’s. Thus, ‘0’ will be denoted by
a single ‘1’ and number 5 will be represented by a
block of six ‘1’s.

2. b is a separator between arguments.

Figure 2. A Turing machine.

3. The state transition of the control will be denoted by a
5-tuple (current state, current symbol, next state,
symbol written, movement of head), where movement
of head is as follows: move left by one square (L),
move right by one square (R), or remain stationaly
(S). Initially, the TM head will be scanning the first
‘1’ of the first argument.

The state transition diagram is shown in Figure 3.
 The label of the edges denotes: (current read symbol,
write symbol, movement of the head); in the diagram, the
next state is indicated by the state at the end of that
arrowhead. The state transition system has five states.
Starting in state s0, it reaches the first b after the first
block of ‘1’s and changes the b to ‘1’ and reaches state
s1. At this point, the two blocks of ‘1’s have been
connected by a ‘1’ and hence consists of a block
consisting of (n + 1) + 1 + (m + 1) ‘1’s and the machine
returns to the leftmost ‘1’ entering state s2. Now that the
remaining two extra ‘1’s need to be removed, which is
done in states s2 and s3 respectively, and enters the final
state s4. The tape configuration shown below depicts the
initial and final configurations for adding 3 and 2 on the
left and right respectively. Note that the TM description
assumes that there will be at least two ‘1’s on the tape
initially (Figure 4).

Remarks: It is evident from the above description
that any computation step described by a TM can be
mechanically carried out – this could be intrepreted to say
that one can perform these operations on a paper and pencil.

 Alonzo Church opined that any process which could
naturally be called an effective procedure can be realized
by a TM. Thus, the main thesis of computation takes the
following form:

Church–Turing thesis: Turing machines are capable of
solving any effectively solvable algorithmic problem. See
Box 1 to appreciate the robustness of the thesis. Box 2,
makes a qualitative comparison of the works of the two
giants of compatibility: Alonzo Chruch and Alan M.
Turing.

Universal computing machine (or universal turing
machine)

The thesis discussed above naturally leads to the
following question: does one need a different computing
machine for every problem?
 Turing showed that it is possible to invent a single
machine that can be used to compute any computing
sequence (or solve any effective procedure). The universal
machine, say , can be constructed that has the capability
of behaving like any other computable machine. is like
any other Turing machine, but its input is essentially the
description of the given Turing machine along with its
input on its tape as shown in Figure 5.

SPECIAL SECTION: THEORY OF COMPUTATION

CURRENT SCIENCE, VOL. 106, NO. 12, 25 JUNE 2014 1672

Figure 3. Finite state control of a Turing machine.

Figure 4. Initial and final configurations of an TM that adds two numbers, m and n.

Figure 5. A universal Turing machine ().

Box 1. Robustness of Church–Turing thesis

 Church–Turing thesis implies that the most powerful
supercomputer with the most sophisticated array of
programing languages is no more powerful than a
PC with a simple hardware and software.

 Both can solve precisely the same class of algori-
thmic problems.

 Non-computable problems are solvable by neither.
 If a new computer or a PL is designed, one needs

to find reasons other than raw computing power.
 Solvability is extremely robust: It is invariant under

changes of a programing language or computer
hardware.

 With the input as above, , it behaves exactly like TMi
for its input, . That is, yields exactly the same results
as TMi on input ; further terminates if TMi terminates
on giving the results and does not terminate on if TMi
does not terminate on . Note that the simulation is done
using polynomial transformations (b in the diagram
denotes blank tape symbol).
 The above results have a far-reaching consequence and
can be interpreted as follows:

Any algorithmic problem for which an algorithm can be
found in any programing language on any computer

(existing or that can be built in future) requiring un-
bounded amounts of resource is also solvable by a TM.

In other words, Church–Turing thesis implies that the
most powerful supercomputer with the most sophisticated
array of programing languages is no more powerful than
a PC with a simple hardware and software up to poly-
nomial loss in efficiency.

Computability and non-computability

In an earlier section, we considered an example of a TM
with quintuples. Consider the quintuples underlying
Figure 3 explicitly as given below:

 (s0,1,1,R,s0); (s0,b,1,S,s1); (s1,1,1,L,s1);
(s1,b,b,R,S2); (s2,1,b,S,s2); (s2,b,b,R,s3); (s3,1,b,S,s3);
(s3,b,b,R,s4).

It must be evident that the Turing machine is described
clearly by these tuples. With a binary alphabet, let us use
the unary system to represent symbols and numbers and
encode each tuple with the following encoding: (i) ‘0’
denotes a blank square on the TM tape denoted in unary
by ‘1’, (ii) n+1 ‘1’s denote the number n + 1, (iii) state si
denoted by number ‘i’ in unary, (iv) for the tape head
movements let us represent no movement or stationary by

SPECIAL SECTION: THEORY OF COMPUTATION

CURRENT SCIENCE, VOL. 106, NO. 12, 25 JUNE 2014 1673

Box 2. Alonzo Church and Alan M. Turing

 In April 1936, Church proved the unsolvability of
the Entscheidungsproblem of logic.

 Through -definability Church defined the notion
of ‘effective computability’.

 He proved effective unsolvability of various
mathematical and logical problems.

 In Gödel’s view, definition of effective computabil-
ity was thoroughly unsatisfactory.

 Turing submitted the results in May 1936 ‘On comput-
able numbers …’ (ref. 1).

 Established the formal equivalence of -definability and
the Turing definability in 1937.

 Church’s review: there is involved here the equivalence
of three different notions – computability by a Turing
machine, general recursiveness in the sense of Her-
brand–Gödel–Kleene and -definability. Of these, the
first has the advantage of identification with effectiveness
in the ordinary sense evident immediately… . The
second and third have the suitability for embodiment in a
system of symbolic logic.

11 (number 1), L by 111 (number 2) and R by 1111
(number 3), and (v) each component in the quintuple is
separated by ‘0’. The first tupe is encoded by

 …00 1 0110110111101 00… .

Now TM can be denoted by the set of tuples in some
order separating each tuple from the other by ‘00’ (i.e.
two blanks). The corresponding encoding is given below:

…00 1 0110110111101 00 101011011011 00 11011011
0111011 00 110101011110111 00 111011010110111
00 11101010111101111 00 11110110101101111 00
1111010101111011111 00.

The encoding is just a natural number and can be treated
as a serial number of TM. Thus, every TM will have a dis-
tinct serial number. Since the serial numbers are natural
numbers, the following result follows:

The number of distinct Turing machines is countable
(note 3).

Above, we have shown how the whole TM can be encoded
by a number. We also know that the number of functions
on the natural numbers is uncountable. Thus, from the
Church–Turing thesis, we can conclude:

There are non-computable functions.

In the following, an explicit example of a non-computable
function due to Tibor Radó taken from Feferman et al.3.

Busy beaver (BB) problem: We shall consider an
example of a non-computable function (cf. ref. 4). Con-
sider a Turing machine, T, that when started on a comp-
letely blank tape, eventually halts with some number of
‘1’s. Productivity, p, of a TM is defined as follows:

 If TM T starting on a blank tape, leaves n, ‘1’s then its

productivity is n.

 If T does not halt then its productivity is 0.

Thus,

p: Turing machine descriptions natural number.

There are several TMs with the same number of states.
Thus, it is possible to define the notion of maximum
productivity that a TM with that number of states, say k,
can have. This new function will be:

natural numbers the number of states natural
numbers.

Let us call the function BB. Thus,

BB(k) = n, implies the maximum productivity of a
k-state Turing machine is n.

Further, it may be noted that there may be several
different k state machines with maximum productivity n.
Let us call any of these machines a BB for k.

Theorem 1. There is no TM which will compute BB(k),
i.e. which when started in a standard configuration on a
tape with k ‘1’s will halt in standard configuration
on a tape with BB(k), ‘1’s. This example is due to Tibor
Rádo3.

Proof: Informally, the problem can be interpreted as
follows: There is no TM that prints the maximum number
of ones an N-state halting TM can write when started on a
blank tape. Let us assume on the contrary that there is a
machine B for the BB problem that has k states. Now,
make the following construction:

1. Construct a TM, say A, with n states which writes n
‘1’s on an initially blank tape.

2. Construct a new machine, say C, which connects the
halting state of A to the start state of B.

3. Connect the halting state of B to the start state of
another copy of B.

SPECIAL SECTION: THEORY OF COMPUTATION

CURRENT SCIENCE, VOL. 106, NO. 12, 25 JUNE 2014 1674

First, A writes n ‘1’s , followed by the first copy of B
computing BB(n), and then the second copy of B takes
over and computes BB(BB(n)). The total number of states
in our machine is n + 2k. Our machine may be a busy
beaver for n + 2k, but it is certainly no more productive
than such a machine. Thus, if the busy beaver machine
exists, we have

 BB(n + 2k) BB(BB(n)), for any n.

It is easy to see that the productivity of Turing machines
increase as states are added, i.e.

 if i < j, then BB(i) < BB(j).

Consequently, if B exists, then n + 2k BB(n), for any n.
Since this is true for any n, it is true for n + 11, yielding

 n + 11 + 2k BB(n + 11), for any n.

But it is easy to show that BB(n + 11) 2n by
constructing a TM that has 11 states for doubling the
number of ‘1’s on the tape, and composing such a
machine with the n-state machine for writing n ‘1’s.
Combining this fact with the previous inequality we have

 n + 11 + 2k BB(n + 11) 2n, for any n.

That is, 11 + 2k n, for any n must be true if the busy
beaver exists.
 This is an obvious contradiction of the hypothesis of
existence of TM for BB(k). �

The halting problem: The halting problem of Turing
machines can be stated as follows: Given a Turing
machine, TM, with a finite number of non-blank tape
symobols in any configuration, will the TM eventually
halt? Unfortunately, this problem is unsolvable. This was
first proved by Turing in 1936 (ref. 1). In the context of
computer programing, the result can be stated informally
as follows

There is no computer program that can examine the
code for a program and determine whether that program
halts.

The unsolvability of the halting problem is formally
stated below.

Theorem 2. There is no algorithm to determine if a
Turing machine in an arbitrary configuration will halt
eventually.

Proof sketch3: On the contrary let us assume that there is
such a machine, say H. As UTM is yet another TM, let H
be a UTM. Thus, H(t, n) simulates the behaviour of TM T
on input ‘n’.

 Let us construct a new machine using a copier TM as
follows:

a. Let C be the copier machine which when started with

a single block of ‘1’s, halts after writing two copies of
that block of ‘1’s separated by a ‘0’. Thus, the number
of ‘1’s will be 2 n, where n is the number of ‘1’s in
one block on the tape initially.

b. Now construct a new composed machine, say M, by
joining the halt state of C to the start state of H.

 Such a machine, when started on a tape with a

block of n ‘1’s, first modifies the tape to consist of
two blocks of n ‘1’s separated by a ‘0’. Because of
construction, the machine H will have two blocks
of n ‘1’s separated by ‘0’ and hence needs to
answer the questions as to when a TM described
by number ‘n’ will halt on an input ‘n’.

c. Let us construct a machine, say N, that makes an

infinite sequence of transitions if the tape contains
TRUE when it starts, and halts if the tape contains
FALSE. It is easy to construct such a machine using
the encoding: TRUE is represented by ‘11’ and
FALSE by ‘1’.

d. Let us connect machine N with the halt state of H. The
modified composed machine M halts if the machine
with the input code n does not halt on an initial tape
containing n (because if machine n does not halt on n,
the halting machine will leave TRUE on the tape, and
M will then go into its infinite sequence), and vice
versa.

e. The impossibility of such a machine may be seen by
considering the code for the modified M itself. What
happens when M is started on a tape containing M’s
code? Assume that M halts on M, then by the
definition of the machine M, it does not halt. But
equally, if it does not halt on M, the definition of M
says that it should halt.

This is a contradiction, and thus, there cannot be any TM
that solves the halting problem. �

Note: The reader should note that it is possible to find a
solution whether a specific Turing machine from a
specific configuration can halt. The unsolvability refers
to the general problem as stated above.

Remarks: There are several variations of Turing
machines like: (i) allowing multiple tapes, (ii) multi-
dimensional tapes, (iii) arbitrary movement of heads
(rather one square to the left or right), etc. However, the
expressive power of these enriched machines remains
invariant. However, if you restrict the ability of the TM,
then its expressive power could get reduced. Suppose we
remove the ability to write, then the expressive power
gets reduced to that of finite state machines.

SPECIAL SECTION: THEORY OF COMPUTATION

CURRENT SCIENCE, VOL. 106, NO. 12, 25 JUNE 2014 1675

 In the next section, we shall discuss the way Turing
defined computable numbers and sketch the way he
established the unsovability of the Entscheidungs
problem.

Computable numbers and the Entscheidungs
problem

You can build an organ which can do anything that can
be done. But you cannot build an organ which tells you
whether it can be done.

J. von Neumann

Turing’s original motivation was characterization of
computable numbers and to show the unsolvability of
Hilbert’s Entscheidungsproblem.

According to Turing, a number is said to be computable
if its decimal can be written down by a machine
described above.

He starts by constructing machines for computing
sequences. For instance, consider the sequence
010101… . It is easy to observe that in the sequence,
between every two ‘0’s there is a ‘1’. It is is easy to
understand that we can construct a TM for computing
such a sequence starting from a blank tape. Similarly, the
sequence, 001011011101111011111… can again be
computed by Turing machine, noting that the number of
‘1’s between two ‘0’s increases by ‘1’ as we proceed up
the sequence.
 Let machine configuration be interpreted to mean the
state of the finite control, the symbol under the scan head
and the complete contents of tape that are not blank.
From each such configuration, one can have the following
possibilities: (a) the machine can move based upon the
symbol being scanned and the state of the machines, and
(b) there is no possible move by the machine. Notice that
the moves of the machine are entirely determined by the
configuration. In terms of the moves, one can say: (a) the
machine makes a finite number of moves and reaches a
configuration from which there is no other possible move,
or (b) the machine moves from one configuration to another
forever. In case (b), one can have two interpretations: (1)
is it printing any useful information at all, (2) there is no
useful information being printed. For a clear under-
standing, let us use the following terminologies.

Definition 1. There are two kinds of symbols that will
be written on the tape: (a) numbers 0 or 1 reflecting the
value of a number at that configuration – referred to as
type-1 symbols, and (b) symbols written to capture some
memorization or inference on the configurations reached
so far – referred to as type-2 symbols.

Definition 2. If the machine is supplied with a blank
tape and set in motion, starting from a correct initial

configuration, the subsequence of type-1 symbols printed
by it is called the sequence computed by the machine. The
real number whose binary expression as a binary decimal
is obtained by prefixing the sequence with the decimal
point is called the number computed by it.

Definition 3. A computing machine is said to be
circular if it reaches a configuration from which there is
no possible move, or it has moves forever printing only
symbols of type-2 and unable to print any symbols of
type-1. Otherwise, the machine is said to be cycle-free.

 Using the above definitions, computable numbers are
defined as follows.

Definition 4. A sequence over say ‘0’s and ‘1’s is said
to be computable if it can be computed by a circle-free
machine.

Definition 5. A number is said to be computable if it
differs by an integer from the number computed by a
cycle-free machine.

The above definitions lead to

Definition 6. A number is computable (Turing com-
putable) if there exists a Turing machine starting from a
blank tape that computes an arbitrarily precise approxi-
mation to that number.

Note as proved earlier that compuatble numbers are
enumerable.

Noting that one cannot define general computable func-
tions of a real variable as there is no general method of
describing a real number, Turing showed that large classes
of numbers are computable utilizing recursive definitions
using integral variables and computable variables.

Some examples of computable numbers

1. Let (m, n) be computable, where m and n are

integral numbers and r is some integer. Then, (n) is
computable where

 (0) = r,
 (n) = (n, (n – 1)).

2. If (m, n) is a computable function of two integral

variables, then (n, n) is a computable function
of n.

3. If (n) is a computable function whose value is
always 0 or 1, then the sequence whose nth figure is
 (n) is computable.

4. It must also be noted that the Dedekind’s theorem
(note 4) does not hold by replacing ‘real’ by ‘comput-
able’ throughout. However, the theorem holds for any
section of the computables such that there is a general

SPECIAL SECTION: THEORY OF COMPUTATION

CURRENT SCIENCE, VOL. 106, NO. 12, 25 JUNE 2014 1676

process for determining to which class a given number
belongs. This is formally stated below.

 If G() is a propositional function of the computable

numbers and

 a. () () {G() and (G())},
 b. (G() and G()) (<);
 denotes ‘implication’,

 and there is a general process for determining the

truth value of G(), then there is a computable such
that G() and G() .

5. Computable convergence: A sequence n of a
computable numbers converges computably if there is
a computable integral valued function N() of the
computable variable , such that if > 0 and n > N()
and m > N(), then |n – m| < ε. Using this definition,
the following real numbers are shown to be compu-
table:

a. A power series whose coefficients form a comput-

able sequence of computable numbers is computably
convergent at all computable points in the interior
of the interval of convergence.

b. The limit of a computably convergent sequence is
computable. From this result and the series
 = 4(1 – 1/3 + 1/5 – …), it is possible to deduce
that is computable. Similarly, from the series for
e it can be shown to be computable.

c. In similar ways, Turing established that a large
class of numbers such as real parts of algebraic
numbers, real parts of the zeroes of the Bessel
functions, etc. are all computable.

Unsolvability of Entscheidungsproblem

What Gödel had established: Gödel had shown that in
the formalisms like Principia Mathematica, there are
propositions, say P, such that neither P nor P is
provable. As a result, it was shown that no proof of
consistency of Principia Mathematica can be given within
that formalism.

What Turing established: There is no general method
whether a given formula P is provable in the restricted
Hilbert’s functional calculus (note 5).

 It must be noted that if the negation of what Gödel has
shown had been proved, then there would have been a
solution to the Entscheidungsproblem (Boxes 1 and 2).

Theorem 3. Entscheidungsproblem is unsolvable.

Proof idea: For each TM, , he constucted a formula
(), and showed that if there is a general method for

determining whether () is provable, there is a general
method for determining whether ever prints 0. The
latter is impossible by the halting problem described
above and hence the unsolvability of the Entscheidungs-
problem. �

Seeing computing everywhere

One of the hallmarks of Turing was that he was seeing
computation everywhere. He firmly established in a variety
of ways that traditional mathematical concepts specified
by finitely definable approximation, such as measure or
continuity could be made computational. Some of his
notable contributions of significance explicitly to com-
puting have been

 LU decomposition;
 Finite approximations of continuous groups (of interest

to John von Neumann);
 Computation over the reals (which has taken deep

roots recently), etc.

In fact, he had also worked on devising a method for the
practical computation of zeros of Riemann zeta function
during a vacation break at Cambridge from his Ph D work
at Princeton.
 In the following, we touch upon the rationale and main
result of his Ph D thesis (ref. 5; appears in ref. 6 and re-
cently reprinted as ref. 5).

System of logic based on ordinals: Turing worked for
his Ph D at Princeton under the supervision of Alonzo
Church. He started wondering about the ways in which
Gödel’s incompleteness theorem can be confined.
 He started with the argument that if there are already
informal or intuitive reasons for accepting the axioms of
the system to be true, then one ought to accept the state-
ment of its consistency as a new axiom. Then apply the
same considerations to the new system by iterating the
process of adding consistency statements as new axioms.
As Teresa Numerico7 states, Turing tried to repair the
problems created by Gödel’s incompleteness theorem for
the formalistic approach to mathematics.
 In his thesis, Turing established that Gödel’s incom-
pleteness can be overcome for an important class of
arithmetical statements (though not for all) and investi-
gated the process systematically by iterating it into the
constructive transfinite taking unions of logical systems
at ordinal notations. Turing proposed the construction of
succession of ‘ordinal logics’. Each of the ordinal logics
in the hierarchy for each ordinal number up to some
transfinite ordinal included the Gödel statement ‘I am
unprovable in L’ for the previous logic L in the hierarchy.
He opined that with a complete ordinal logic one should
be able to confine the non-mechanical steps entirely to
verifications that particular formulae are ordinal formulae

SPECIAL SECTION: THEORY OF COMPUTATION

CURRENT SCIENCE, VOL. 106, NO. 12, 25 JUNE 2014 1677

(it could lead to automatic refereeing). But the question
is: how easy is it to verify the ordinal formula.
 In this context, Turing reflects on the role of intuition
and heuristics in mathematical discovery. To quote ‘… In
consequence of the impossibility of finding a formal logic
which wholly eliminates the necessity of using intuition,
we naturally turn non-constructive systems of logic with
which not all the steps in a proof are mechanical, some
being intuitive.’ According to Turing, it was unlikely that
interesting theorems would be demonstrated in mathe-
matics without the use of intuition and heuristics.

Building computing engines

While Turing is a celebrated genius for his theoretical
contributions through his writings, he has also contrib-
uted immensely to the development of computing engines
or computers. Before going with his involvement with
building computer systems, let us first understand that the
stored programing concept often attributed to John von
Neumann was really the concept embedded in Turing’s
universal machine. The Box 3 highlights these aspects
succinctly.
 Turing’s first involvement with actual computing
started with the Colossus – a code-breaking computer
developed and built at Blechley Park during World War
II (Figure 6). Turing completed the logical design of the
famous Bombe, built to break German ENIGMA mes-
sages towards the end of 1939. This was built by the Brit-
ish Tabulating Machine Company in Letchworth. It was
essentially a computing engine with the limited scope to
find the positions at which the German message has been
encrypted that would lead to likely candidates that could
be tested on an copy/replica of an ENIGMA machine; if
German text emerged (even if only a few words along
with some nonsense), the candidate settings were treated

Box 3. Stored programing concept

 The concept usually covers the following three sce-

narios

 Instructions can be stored in memory as num-
bers. Gödel’s arithmetization technique used by
Turing in UTM is an example of this aspect.

 Instructions and data can be stored as numbers
and thus there is no distinction between the two.
This feature is an integral part of the UTM defini-
tion.

 Instructions expressed in the language of num-
bers can be manipulated like any other numbers,
leading to the idea of program modification.

 Thus, one can say that John von Neumann engi-
neered Turing’s ideas of programs as data to realize
the first stored program computer often referred to as
von Neumann machines.

Figure 6. The Colossus, 1943.

as the right ones. The design of Bombe was based on
electromagnetic relays. A large-scale electronic machine,
Colossus (Figure 6) was built in 1943 that would get set-
tings from computing engines like Bombe and decipher
and print out the German text. The architecture of Colos-
sus had borrowed ideas from Turing’s paper and the ma-
chine had flexibility, it was far from using the stored
program concept as in the UTM. While working with Co-
lossus, both Turing as well as M. H. A. Newman (who
had been consulting on Colossus) realized that the idea of
stored program as available in UTM could be constructed
for the future machine and thus realize a real automatic
universal machine.
 In June 1945, J. R. Womersley, Head of Mathematics
Division at NPL, wanted Turing to design a computer
called automatic computing engine7 (ACE); the word
engine was a deliberately borrowed from Charles Babbage.
Turing gave the proposal for ACE (Figure 7) before the
end of 1945 and wanted it to be electronic, using binary
numbers with 1 MHz clock using mercury delay line
storage. Turing expected an addition of 32 bit numbers
requiring 32 s and 32-bit multiplication requiring over
2 ms.
 Two important characteristic features of Turing’s
design are summarized below:

 It had a small number of primitive instructions mostly
for transfers between memory and registers – resem-
bled reduced instruction set computers (RISC) which
came later in 1990s. It can be seen that Turing’s con-
cern was ‘speed’.

 Use of a stack and its instructions like PUSH and POP
called BURY and UNBURY; in a sense, Turing was
the first to use the stack in a computer architecture.

Some of the highlights from his lecture to the London
Mathematical Society, 20 February 1947 (ref. 8) are
quoted below:

 … machines such as ACE are in fact practical ver-
sions of the universal machine …

 … the complexity of the job the machine must do is
concentrated on the tape – (that is software) and does
not appear in the universal machine in any way.

SPECIAL SECTION: THEORY OF COMPUTATION

CURRENT SCIENCE, VOL. 106, NO. 12, 25 JUNE 2014 1678

 I believe that the provision of proper storage is the
key to the problem of the digital computer, and cer-
tainly if they are to be persuaded to show any sort of
genuine intelligence much larger capacities than are
yet available must be provided. In my opinion, this
problem of making a large memory available at rea-
sonably short notice is much more important than that
of doing such as multiplication at a high speed.

 On self modifying capability – It would be like a pupil
who had learnt much from his master, but had added
much more by his own work. When this happens, I
feel that one is obliged to regard the machine as show-
ing some intelligence.

From the above, it must be clear how Turing had the
whole of computing in his design. He had introduced sub-
routines and interpretive codes which became common in
later designs. A broad impact of Church and Turing on
the programing language area is summarized in Box 4.
 Turing getting frustrated with the progress of ACE,
Turing moved to University of Manchester (note 6) in
September 1947, where MARK I was being built. This
was later marketed by Ferranti Limited commercially. He
was responsible for the programing aspects. He defined
programing as ‘an activity by which a digital computer is
made to do a man’s will, by expressing this will suitably
on punched tapes’. MARK I used 40-bit words and could
store 20-bit instructions. These words were displayed on

Figure 7. Pilot model of the automatic computing engine.

Box 4. Programing languages: Church vs Turing

 Turing machines simulate -calculus.
 Descendants of Church’s notation work better than

those of Turing’s.
 Lisp and ALGOL programers: There was a need to

split between Church and von Neumann style (due
to limitations of computers).

 With progress in technology, formalisms such as
ML, Haskell have had impact and are consciously
closer to -calculus.

CRTs in 5-bit groups. The encoding was done by a base-
32 notation, where each 5-bit code was represented by a
teleprinter character corresponding to that code. Thus, the
code for a character was necessary to be known by each
programer.

Artificial intelligence and digital forecast

‘ … If a machine is expected to be infallible, it cannot
also be intelligent’

A. M. Turing, London Mathematical Society Address,
20 February 1947.

Turing test9,10

While Turing described a machine capable of computing
all effectively computable functions, he formulated a test
which has come to be known as Turing test for testing
normal human intelligence (Figure 8). The Turing test is
an imitation game played by three people. In this game, a
man and a woman are in one room, and a judge is in
another room. The three cannot see one another, so they
communicate via e-mail. The judge questions them for
5 min, trying to discover which of the two is the man and
which is the woman. This would be easy, except that the
man lies and pretends to be a woman. The woman tries to
help the judge. If the man is a really good impersonator,
he can fool the judge 50% of the time. But, it seems that
in practice, the judge is right about 70% of the time.
 Now, the Turing test replaces the man with a computer
pretending to be a human. If it can fool the judge 30% of
the time, it passes the Turing test. The rationale of the
test may be seen in Turing’s own words in his BBC inter-
view: ‘The idea of the test is that the machine has to pre-
tend to be a man, by answering questions put to it, and it
will only pass if the pretence is reasonably convincing … .
We had better suppose that each jury has to judge quite a
number of times, and that sometimes they really are do-
ing with a man and not a machine. That will prevent them
from saying “It must be a machine” every time without
proper consideration.’ The underlying arguments against
the test can again be seen in his own words: ‘The game
may be criticized on the ground that the odds are weighted
too heavily against the machine. If the man were to try
and pretend to be the machine he would clearly make a
very poor showing. He would be given away at once by
slowness and inaccuracy in arithmetic. May not machines
carry out something which ought to be described as

Figure 8. Turing test.

SPECIAL SECTION: THEORY OF COMPUTATION

CURRENT SCIENCE, VOL. 106, NO. 12, 25 JUNE 2014 1679

thinking but which is very different from what a man
does? This objection is a very strong one, but at least we
can say that if nevertheless, a machine can be constructed
to play the imitation game satisfactorily, we need not be
troubled by this objection.’
 Even though it is not formally defined, it is a practical
test applied to an existing entity that is ‘running’. It con-
sists of a conversation over a period of time between the
tester and the entity being tested. This demands an ability
to learn and adapt the contents and the structure of the
sayings of the tester. Note that the testing becomes harder
the longer it goes on. The point of the test is that if some
entity passes it, it is hard to deny that it is intelligent and
hence throws up the possibility of judging artificial entity
to be intelligent. The basis for this is based on Turing’s
view that ‘thinking is singularly and critically indicated
by verbal behaviour indistinguishable from that of people
as determined by a blinded experiment’. In summary,
Turing test shares important properties with interactive
proofs such as exponentially rare false positives, non-
composability, non-transferability, etc. Turing’s seminal
contribution was in enabling blinded controls. While the
test can provide an interactive proof of intelligence, it is
not particularly useful as a research goal itself. While
several internet sites offer Turing test chatterbots, none of
them had passed the test till recently. On 14 June 2014, a
new version of a chatbot developed by PrincetonAI (a
small team of programers and technologists not affiliated
with the Princeton University, and backed by computer
and gee-whiz algorithms referred to as ‘Eugene Goost-
man’ was able to fool the Turing test 2014 judges 33% of
time – good enough the threshold set by Alan Turing in
1950. For details the reader is referred to the competition
on Loebner Prize (see http://www.bbc.com/news/
technology-27762088, 9 June 2014).
 Turing’s work on artificial intelligence (AI) and his
reflections/reactions on questions of ‘definitions of AI’
remind me of the views of Richard Feynman in his
John Danz Lecture in 1963 on ‘Uncertainty of science’
quoted below:

‘… I think that extreme precision of definition is often
not worthwhile, and sometimes it is not possible – in
fact mostly it is not possible… . I am not going to say
that everything has to be done the same way when a
method of testing different from observation is used. In
a different field perhaps, it is not so important to be
careful of the meaning of words or that the rules be
specific, and so on. I do not know.’

Digital forecast

Trying to understand the way nature works involves a
most terrible test of human reasoning ability. It involves
subtle trickery, beautiful tightropes of logic on which one

has to walk in order not to make a mistake in predicting
what will happen.

Richard Feynman, John Danz Lecture, 1963 (note 7)

It is well worth analysing Turing’s forecast done in his
paper ‘Computing machinery and intelligence’. To quote:

‘I believe that in about fifty years’ time it will be pos-
sible, to program computers, with a storage capacity of
about 109, to make them play the imitation game so
well that an average interrogator will not have more
than 70 per cent chance of making the right identifica-
tion after five minutes of questioning. The original
question, “Can machines think?” I believe to be too
meaningless to deserve discussion. Nevertheless I be-
lieve that at the end of the century the use of words and
general educated opinion will have altered so much that
one will be able to speak of machines thinking without
expecting to be contradicted.’

To quote from the analysis of Turing’s predictions done
by the Turing laureate Jim Gray:

‘With the benefit of hindsight, Turing’s predictions
read very well. His technology forecast was astonish-
ingly accurate, if a little pessimistic. The typical com-
puter has the requisite capacity, and is comparably
powerful. Turing estimated that the human memory is
1012 and 1015 bytes, and the high end of that estimate
stands today. On the other hand, his forecast for ma-
chine intelligence was optimistic. Few people charac-
terize the computers as intelligent. You can interview
Chatter Bots on the Internet (http://www.loebner.net/
Prizef/loebner-prize.html) and judge for yourself. I
think they are still a long way from passing the Turing
test. But, there has been enormous progress in the last
50 years, and I expect that eventually a machine will
indeed pass the Turing Test. To be more specific, I
think it will happen within the next 50 years because I
am persuaded by the argument that we are nearing par-
ity with the storage and computational power of the
mind. Now, all we have to do is understand how the
mind works (!).’

While there are several examples wherein computers
have assisted in arriving at proofs of several open pro-
blems in mathematics, including the four colour conjecture
and also IBM’s Deep Blue computer succeeded in beating
Gary Kasparov, the world chess champion, we are still far
away from building intelligent machines. In all the above
intelligent tasks enumerated, computers have essentially
acted as tools rather than forming new concepts.
 Implicit in the Turing test, are two sub-challenges that
in themselves are quite daunting: (1) read and understand
as well as a human, and (2) think and write as well as a
human. Both of these appear to be as difficult as the

SPECIAL SECTION: THEORY OF COMPUTATION

CURRENT SCIENCE, VOL. 106, NO. 12, 25 JUNE 2014 1680

Figure 9. Three prosthetic challenges: vision, hearing and speech.

Turing test itself. Due to advances in computing techno-
logy, there has been tremendous progress in speech rec-
ognition, understanding, speech synthesizers, limited
language translation, visual recognition, visual rendering,
etc. While one may say the conceptual progress in these
areas is limited, it is still a boon to the handicapped and
in certain industrial settings. There is no doubt that these
prosthetics will help a much wider audience and shall revo-
lutionize the interface between computers and people
(Figure 9).
 When computers can see and hear, it will break com-
munication barriers. It should be much easier and less in-
trusive to communicate with them. In a sense, it will
allow one see better, hear better and remember better.
Cell phone innovations are typical examples of these
impacts which we have started seeing already.

Final remarks

Alan Turing’s story is amazing. Starting from establishing
the impossibility of Hilbert’s dream, he founded computer
science. His view of computing was 360. His designs
were beyond the times and cropped up much later almost
as new discoveries. Turing’s discoveries and inventions
did not just confine to computing engines; his contribu-
tions spanned the theory of algorithmic randomness,
chemical basis for morphogenesis and nonlinear dynamic
simulation. His abstraction of intelligence through Turing
test has had an impact in a variety of ways on the human–
machine interface and also on human prosthetics. The
world aptly celebrated his centenary and paid tribute to
one of the greatest scientific minds of all times.

Notes

1. Readers who are not familiar with logic, may refer to any logic
textbooks or even Wikipedia to understand these terms.

2. Gödel in his Gibbs Lecture says ‘the greatest improvement was
made possible through the precise definition of the concept of
finite procedure, which plays a decisive role in these results. There
are several different ways of arriving at such a definition, which,
however all lead to exactly the same concept. The most satisfactory
way, in my opinion, is that of reducing the concept of finite procedure

to that of a machine with a finite number of parts, as has been done
by the British Mathematician Turing’ (Gödel, 1951, pp. 304–305)
in Feferman2. It is also of interest to see Gödel’s remark later in
1972 about Turing’s argument saying mental procedures cannot go
beyond mechanical procedures. To quote Gödel’s remark11: ‘What
Turing disregards completely is the fact that mind in its use, is not
static, but constantly developing, i.e. that we abstract terms more
and more precisely as we go on using them, and that more and
more abstract terms enter the sphere of our understanding’. Turing
was well aware of these aspects become quiet evident if one analy-
ses Turing’s work on machine intelligence.

3. Readers not familiar with these terms may refer to countable and
uncountable sets in elementary logic books or Wikipedia. Note that
countable does not mean finite.

4. The unfamiliar reader is referred to any elementary real-analysis
book.

5. First-order calculus.
6. MARK I was the first EDVAC-type electronic stored-program

computer to be completed in the UK (June 1948).
7. In this era of machine learning, it would indeed be nice to read,

Richard Feynman, The Meaning of it All, Penguin Books, 1998.

1. Turing, A. M., On computable numbers, with an application to the
Entscheidungs problem. Proc. London Math. Soc., Ser. 2, 1936,
42, 230–265, also reprinted in Davis6.

2. Turing, A. M., On computable numbers, with an application to the
Entscheidungsproblem: a correction. Proc. London Math. Soc.,
Ser. 2, 1938, 43(6), 544–546, also reprinted in Davis6.

3. Feferman, S. et al. (eds), Collected Works of K. Gödel, Oxford
University Press, Oxford, 2001, vols I–III.

4. Stanford Encyclopedia of Philosophy, plato.stanford.edu/entries/
turing-machine

5. Alan Turing Systems of Logic, The Princeton Thesis, Princeton
University Press, Princeton, NJ, 2012.

6. Davis, M. (ed.), The Undecidable: Basic Papers on Undecidable
Propositions, Undecidable Problems and Computable Functions,
Raven Press, New York, 1965.

7. Jack Copeland, B., Alan Turing’s Automatic Computing Engine,
Oxford University Press, 2005.

8. Petzold, C., The Annotated Turing: A Guided Tour through Alan
Turing’s Historic Paper on Computability and the Turing
Machine, Wiley Publishing, Inc., 2008.

9. Turing, A. M., Intelligent Machinery, Reprinted in Cybernetics:
Key Papers (eds Evans, C. R. and Robertson, A. D. J.), University
Park Press, Baltimore, 1948.

10. Turing, A. M., Computing machinery and intelligence. Mind,
1950, LIX, 433–460.

11. Shagir, O., Gödel on Turing on Computability. In Church’s
Thesis after 70 years (eds Olszewski, A., Wolenski, J. and Janusz,
R.), Ontos-Verlag, 2006, pp. 393–419.

ACKNOWLEDGEMENTS. This article is based on several lectures
given by the author during the Turing centenary year in India as well as
a special session organized by him in the annual meeting of the
Indian Academy of Sciences, Bangalore at Dehradun in 2012. The arti-
cle has been written to convey the depth and beauty of Turing’s contri-
butions both to the uninitiated reader as well persons exposed to
computer science. Intentionally, some of the definitions given by Tur-
ing are preserved as that would provide the context of challenges and
the rationale of research of various areas. There have been several ex-
positions by a large number of authors spread over a period of time and
the author is indebted to them. I thank my colleagues Prof. Jaikumar
Radhakrishnan and Dr N. Raja for the feedback on the initial manu-
script and Prof. Y. N. Narahari (Indian Institute of Science, Bangalore)
for being patient enough in receiving the article.

