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Ganga River Basin (GRB) is the second most populous 
river basin in the world, which has been undergoing 
rapid land-use change during the last few decades. 
Here, we analyse the landscape dynamics in Indian 
GRB (IGRB) using three indices, i.e. class area, mean 
patch size and number of patches for 14 land-use and 
land-cover (LULC) classes using multi-temporal 
Landsat satellite datasets of 1975 and 2010. Major 
change was observed with the expansion of agricul-
tural lands and human settlements and depletion of 
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forests. Agricultural lands covered the highest area 
(>75%), where low to medium-sized patches have  
increased and patches with larger size have been 
slightly reduced in size over past decades. The highest 
increase in percentage of built-up land has been  
appropriately captured on medium-resolution satellite 
imageries using visual interpretation technique. Deg-
radation and loss of forest areas were reported in 
terms of landscape indices; however, the increase of 
plantation is a positive sign in the basin. In general, 
we observed aggregation of agricultural patches and 
reduction of forest patches in small to medium patch 
sizes. We argue the utility of ‘onscreen visual inter-
pretation’ technique in favour of LULC mapping to 
achieve absolute accuracy in such a heterogeneous 
landscape, as it incorporates interpreter’s knowledge. 
We appreciate the free availability of Landsat image-
ries having very good radiometry that has opened the 
doors for exercises with minimum cost. Located in one 
of the most fertile regions of India, the basin accom-
modates more than 400 million human population. 
This has led to expansion of agriculture and built-up 
land at the cost of forest and other land covers.  
Understanding landscape dynamics could help in  
designing an effective land-use policy for IGRB. 
 
Keywords: Agricultural patch, landsat, landscape dyna-
mics, land use change, visual interpretation. 
 
LANDSCAPES are geographic areas demarcated by inter-
acting ecosystems and human interference within them1. 
Landscape ecology attempts to understand the relation-
ships between spatial pattern and ecological processes at 
landscape level, which could explain the association  
between landscape structure, function and dynamics over 
time2. Landscape structure demonstrates the configura-
tion of a landscape that affects ecological processes  
independently and interactively3. Landscape change is 
particularly observed through habitat loss, land transfor-
mation and fragmentation. Majority of the Earth’s terres-
trial ecosystems have been converted either to a managed 
forest and agriculture or to human settlements to cater to 
the basic needs of human beings such as food, fuel and 
shelter4. Agriculture is expanding across a variety of 
tropical ecosystems; however, its impacts on forests are 
among the most serious from an environmental perspec-
tive5. Globally tropical forests once spanned over 17 mil-
lion sq. km, which has now declined to a mere ~11 
million sq. km. It has been predicted that as tropical  
nations develop economically and become increasingly 
urbanized, they might experience drastic land-use transi-
tions, with greater expansion of agricultural lands6. Forest 
plantations in the developing countries have increased by 
~5000 sq. km/yr between 1990 and 2005, with the largest 
increase in China and India. Globally, India ranks second 
in terms of total land area under plantation, by planting 
non-native tree species to provide timber, fuel wood and 
also as a source of income through the sale of carbon 

credits under the Clean Development Mechanism7. An  
effective land-use policy is the need of the hour, particu-
larly in the developing countries, which could put control 
on the over-increasing urbanization and agricultural  
expansion on the cost of other land-cover classes. 
 Analysis of landscape dynamics can provide crucial  
information to planners and researchers about landscape 
functions. Patch dynamics can be utilized to understand 
how urbanization affects landscape structure8. Few stu-
dies have highlighted the advantages of utilizing spatial 
indices to understand the drivers and pattern, composition 
and configuration of landscape dynamics using various 
landscape indices in the past decades9,10. Generally land-
scape dynamics has been analysed using spatial indices 
such as area of land-use or land-cover (LULC) class, 
number of patches and mean patch size, which could be 
derived at multi-temporal scale to understand the struc-
tural changes in the landscape configuration11. Class area 
denotes the sum of areas of all patches belonging to a 
given LULC class. Number of patches gives a count of all 
the patches within a class or from the entire landscape. 
Mean patch size is considered to be a primary predictor 
of heterogeneity within a given class. 
 Regional land-use pattern depicts interaction between 
humans and the environment and the influence of  
resources based on the basic economic activities of man. 
Remote sensing with multi-temporal high-resolution sat-
ellite data has become a powerful tool to effectively 
monitor a variety of aspects of landscape dynamics such 
as urban sprawl, vegetation cover change, forest degrada-
tion and most commonly various types of LULC 
changes12,13. Prior to use in land-cover classification,  
radiometric correction of satellite data is important, 
which addresses errors that arise due to both a sensor sys-
tem detector error and an environmental attenuation error 
and affect the brightness value of pixels (e.g. changes in 
scene illumination, atmospheric conditions and viewing 
geometry)14. Roy et al.15 found visual interpretation tech-
nique to be advantageous over digital interpretation tech-
niques using Landsat data in forest mapping in Arunachal 
Pradesh. Humans are exceptionally adept at visually rec-
ognizing and interpreting complex spatial patterns and 
can comprehensively use shape, size, colour and texture 
in interpretations. Visual interpretation also allows the 
user to demarcate realistic objects, such as patches with 
irregular shapes. Therefore, unlike pixel-based or object-
based approaches, visual interpretation integrates eco-
logical knowledge into image analysis, thus making the 
results more ecologically meaningful1,16. In a recent study 
using visual interpretation, Chitale et al.17 characterized 
nine communities of Shorea robusta in the terai land-
scape of Uttar Pradesh, based on moderate resolution 
(LISS-III) satellite data. Although visual interpretation is 
a time-extensive exercise, it has been widely applied in 
most of land-use studies in India to tackle extremely het-
erogeneous land mosaic without compromising on classi-
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fication accuracy. In the present study, we attempt to un-
derstand the landscape dynamics in the Ganga River  
Basin (GRB) over the Indian territory using landscape  
indices based on the multi-temporal Landsat satellite 
datasets of 1975 and 2010. 
 The Indian GRB (IGRB) extends from 214039 to 
312739N latitude and 731300 to 890953E longi-
tude (Figure 1), forming a part of the composite of Ganges–
Brahmaputra–Meghna basin draining 1,086,000 sq. km in 
Tibet, Nepal, India and Bangladesh. Flowing across the 
great alluvial Indo-Gangetic plains, the river Ganga is 
bordered by the Himalayas to the north and the Vindhya-
Satpura ranges to the south. The climate varies from arid 
to humid; the basin extends from desert in the west to sea 
coast in the east and up to the Himalayan range in the 
north. Annual average precipitation varies from 543 mm 
at the western end of the basin to more than 2000 mm at 
the northeastern end; while average annual temperature 
varies from –5C to 27C from the north to southern and 
eastern parts of the basin. Ganga has significant eco-
nomic, environmental and cultural value in India; hence 
this stimulated us to study the patterns of landscape dyna-
mics in IGRB. It is located in north India, which accounts 
for 26% of its land mass, 30% of its water resources and 
more than 40% of its population18. The IGRB covers an 
area of 804,671 sq. km and is the largest river basin in 
India and the second most populous river basin of the 
world. Social and economic development, including agri-
cultural land expansion has replaced most of the original 
natural vegetation in the IGRB. More than 95% of the 
upper Gangetic plain has been degraded or converted to 
either agriculture or urban areas19. 
 

 
 

Figure 1. Location of Ganga River Basin, India. 

 Landsat multispectral scanner (MSS) and Landsat the-
matic mapper (TM) satellite datasets of 1975 and 2010 
respectively, were utilized to classify the landscape of 
IGRB into 14 LULC classes using a pre-designed classi-
fication scheme (Table 1). In all, 57 scenes of Landsat 
MSS and 51 scenes of Landsat TM from each season, i.e. 
pre-monsoon (March to May) and post-monsoon (Octo-
ber to December) were used to address the temporal 
variation in forest vegetation, agriculture and water bodies. 
A total of 114 scenes of Landsat MSS and 102 scenes of 
Landsat TM were downloaded from the United States 
Geological Survey (USGS) portal and first corrected for 
radiometry using image enhancement techniques follo-
wed by geometric correction using ‘image to image geo-
metric correction’ technique to match the extent of 
satellite data of 1975 and 2010. Visual interpretation-
based land-use and land-cover classification was done  
using individual scenes of satellite datasets to avoid  
errors due to variations in the radiometry, which arise due 
to mosaicking of satellite scenes. More than 250,000 
polygons were manually digitized in a GIS environment 
ArcMap 9.3, and converted to raster layer for analysing 
the landscape dynamics in IGRB. Interpretation of the 
features through mapping was verified from high-
resolution images using Google Earth and 366 ground 
truthing points acquired using global positioning system 
(GPS; Tables 2 and 3). The overall accuracy and kappa 
statistics were used to assess the classification accuracy. 
A suitable classification scheme was formulated (Table 1) 
keeping land cover, land use, topography, spatial and 
spectral resolution and purpose of mapping in mind.  
Present scenario of LULC (2010) was generated first, 
since it was appropriate to verify the interpretation of fea-
tures from other available sources. LULC map of 2010 
was used as reference to generate the historical scenario 
of 1975. Using ‘support vector method’, the change map 
was derived between 1975 and 2010 LULC and the 
change matrix was calculated (Figure 2, Tables 4 and 5). 
 
Table 1. Land-use and land-cover classification scheme utilized to 
classify the landscape into 14 classes using Landsat MSS and Landsat  
  TM satellite data of 1975 and 2010 respectively 

Forest 
 Deciduous forest (DDF) 
 Evergreen broadleaved forest (EBF) 
 Evergreen needle-leaved forest (ENF) 
 Mixed forest (MF) 
 Degraded forest (DEG) 
 Mangroves (MG) 
Non-forest 
 Agricultural land (AG) 
 Built-up land (BU) 
 Grassland (GL) 
 Scrubland (SL) 
 Plantation (PL) 
 Water body (WB) 
 Wasteland (WL) 
 Snow and ice (SI) 
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Table 2. Error matrix of accuracy assessment of land use (LU) and land cover (LC) map for 1975 

                User’s 
               Row accuracy 
LULC class  AG  DDF  MF  ENF  EBF  MG  DEG  PL  SL  GL  WL  WB  BU  SI  total (%) Kc 
 

AG  192         2    1     195   98.46  0.9 
DDF   36       1   1        38   94.74  0.9 
MF     9       1         10   90.00  0.8 
ENF      10   1            11   90.91  0.8 
EBF       9     1         10   90.00  1 
MG       10           10  100.00  1 
DEG         9      1      10   90.00  0.8 
PL     1    1    10         12   83.33  0.9 
SL    2        13        15   86.67  0.8 
GL           10   1      11   90.91  0.8 
WL            1  13      14   88.89  0.8 
WB              10     10  100.00  1 
BU               10    10 100.00  1 
SI                10   10   83.33  0.8 
Column total  192  38  10   10  11  10  10  12  16  11  16   10   10   10 
 

Producer’s 100  95  90  100  82  100  90  83  81  91  81  100  100  100 
 accuracy (%)  
 

Overall classification accuracy = 91.5% 
 

Overall Kappa coefficient = 0.87 

 
 

Table 3. Error matrix of accuracy assessment of land use and land cover map for 2010 

                User’s 
               Row accuracy 
LULC class  AG  DDF  MF  ENF  EBF  MG  DEG  PL  SL  GL  WL  WB  BU  SI  total (%) Kc 
 

AG  192            1    193   99.48  0.9 
DDF   36         1        37   97.30  0.9 
MF     10       0         10  100.00  0.9 
ENF      10   1            11   90.91  0.9 
EBF       9    1          10   90.00  1 
MG       10           10  100.00  1 
DEG         9    1        10   90.00  1 
PL       1    12         13   92.31  0.9 
SL    2        14   1       17   82.35  0.7 
GL            9   1      10   90.00  0.8 
WL            1  14      15   93.33  0.8 
WB              10     10  100.00  1 
BU               10    10  100.00  1 
SI                10   10  100.00  0.8 
Column total  192  38   10   10  11  10  10  12  16  11  16   10   10   10 
 

Producer’s 100  95  100  100  82  100  90  100  88  82  88  100  100  100 
accuracy (%)  
 

Overall classification accuracy = 94.03% 
 

Overall kappa coefficient = 0.90 

 
 
 
 The landscape dynamics in IGRB was studied using 
three spatial indices, i.e. class area (CA), number of 
patches (NP) and mean patch size (MP). Class area is the 
sum of areas (sq. km) of all patches belonging to a given 
class. It was calculated by computing the area occupied 

by a particular LULC class. Number of patches is the 
count of all patches within a class or across the entire 
landscape. A larger landscape has greater probability of 
finding more number of patches. Jointly, CA and NP help 
reveal landscape dynamics. Mean patch size acts as 
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Figure 2. Land-use and land-cover maps of (a) 1975, (b) 2010, (c) LULC change and (d) area statistics (agricultural land occupied 
575,937 sq. km in 1975 and 577,301 sq. km in 2010, excluded from the graph for display purpose). 
 
 
 

Table 4. Land-use and land-cover change statistics of 1975 and 2010 

  Area  
  

 1975  2010 Change 
 

Class  (sq. km)  (%)  (sq. km)  (%)  (sq. km)  (%) 
 

AG  573,055.15  73.10  575,727.88  73.44  –2,672.73  –0.47 
BU  11,286.18  1.44  16,367.98  2.09  –5,081.80  –45.03 
DDF  79,252.15  10.11  73,583.62  9.39  5,668.53  7.15 
DEG  4,187.94  0.53  4,768.33  0.61  –580.39  –13.86 
FP  12,402.18  1.58  13,959.69  1.78  –1,557.51  –12.56 
GL  7,196.65  0.92  7,028.91  0.90  167.73 2.33 
MF  10,037.86  1.28  9,796.74  1.25  241.12  2.40 
SI  7,374.38  0.94  7,355.97  0.94  18.41  0.25 
SL  37,755.36  4.82  36,071.11  4.60  1,684.25  4.46 
WB  14,375.59  1.83  12,948.21  1.65  1,427.38  9.93 
WL  14,967.82  1.91  13,448.53  1.72  1,519.29  10.15 
ENF  9,077.62  1.16  9,919.22  1.27  –841.60  –9.27 
MG  866.08  0.11  847.58  0.11  18.50  2.14 
EBF  2,115.23  0.27  508.42  0.06  1,606.81  75.96 
 
Total  783,950.19 sq. km 
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Table 5. Land-use and land-cover change matrix showing transformation of the classes in (sq. km) during 1975 and 2010 (areas <10 sq. km are  
  not shown) 

  2010 
 

  AG  DDF  MF  ENF  EBF  MG  DEG  PL  SL  GL  WL  WB  BU  SI 
 

1975 
 AG  565,536  159  21  – – – 22  970  439  213  402  3805  4369  – 
 DDF  2,617  72,247  513  – – – 945  191  3087  116  168  127  25  – 
 MF  274  47  9,549  – – – – 175  42  11  – 49  – – 
 ENF  34  32  21  10,055  126  – – – 888  312  25  – – – 
 EBF  – – – 139  2,225  – – – 74 – – – – – 
 MG  22  – – – – 846  – – – – – – – – 
 DEG  124  55  – – – – 3,398  11  503  – 101  – – – 
 PL  33  16  30  – – – – 11,712  70  – – – 450  – 
 SL  2,993  610  18  593  95  – 35  340  37,861  373  575  58  102  – 
 GL  93  34  64  445  – – – 15  206  6707  143  25  – – 
 WL  2,310  23  – – – – – 65  349  19  12,156  129  86  – 
 WB 3,181 – 16  – – – – 19  55  416  13  17,836 63  – 
 BU  78  – – – – – – – – – – 11  11,298 – 
 SI  – – – – – – – – – – – – – 7,611 

 
 

 
 

Figure 3. Patch dynamics during 1975 and 2010. 
 

primary predictor of heterogeneity within a land-use 
class. In order to quantify the changes in spatial and tem-
poral patterns within IGRB, landscape dynamics was cal-
culated for 1975 and 2010 using LULC maps of both 
time-periods using Erdas Imagine 9.2 software. The land-
scape patches from each LULC class were divided into 
seven categories according to patch size range. 
 The landscape dynamics was studied for 14 LULC 
classes in IGRB for 1975 and 2010 with >90% overall 
classification accuracy (Tables 2 and 3). During 1975, 
highest class area was observed for agricultural land  
extending over 73.10% area, followed by dry deciduous 
forest covering 10.11%, scrubland with 4.82%, wasteland 
covering 1.91%, water body 1.83%, plantations covering 
1.58% and built-up land covering 1.44% (Figure 2 a and 
b, Table 4). During 2010, compared to 1975, we observed 
increase in area under agricultural land, plantations and 
built-up land; decrease in area under dry deciduous for-
est, scrubland, wasteland, water body was also observed. 
In 2010, agricultural land occupied 73.44%, deciduous 
forest 9.39%, scrubland 4.60%, water body 1.65% and 
build-up land 2.09% of the area followed by other classes 

(Figure 2 d; Table 4). The agricultural land, deciduous 
forest, mixed forest, plantations, scrubland, grassland, 
wetland, water body and built-up land have undergone 
major transformation in the past three and half decades 
(Table 5). 
 Patch size of >10,000 sq. km area was found to be the 
highest in all LULC classes in IGRB, while patch size of 
<50 sq. km was the smallest with SD of 3.02, median of 
0.05, and mode of 0.01, which indicates fragmented land-
scape (Figure 3 and Table 6). The number of patches with 
highest area in agricultural land was observed to increase 
from 9 to 10 during 1975 to 2010, which could be attri-
buted to expansion of agricultural land to cater to the 
over-increasing demand for food. Single patch of 
>10,000 sq. km was observed in deciduous forest in 1975 
and 2010. The highest patch size in LULC classes such as 
mixed forest, evergreen needle-leaved forest, scrubland, 
water body, and snow and ice was 1000–10,000 sq. km, 
while that in evergreen broadleaved forest, mangroves, 
degraded forest, plantation, grassland, wetland, and built-
up land was 500–1000 sq. km, which indicates smaller 
geographical expanse of these classes. The number of 
patches of <50 sq. km was observed to be the highest in 
built-up land in 1975, with mean patch size of 
0.15 sq. km with SD of 0.55, median of 0.08 and 
n = 72,722, which increased to 74,722 by 2010 with mean 
patch size of 0.17 sq. km with SD of 0.89 and median of 
0.08. This could be attributed to intensive urbanization in 
IGRB, where 4369 sq. km geographical area was con-
verted from agricultural land to built-up land during 1975 
to 2010 (Tables 4 and 5). Patches of <50 sq. km were also 
prevalent in scrubland and plantations, where mean patch 
size ranged from 0.23 to 0.64 sq. km with highest number 
of patches of 0.01 sq. km. The scrubland was predomi-
nantly distributed along the western parts of the basin, 
where the climate remains dry and hot throughout the 
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Table 6. Land use and land cover class-wise matrices of patch dynamics of 1975 and 2010 

  1975  2010 
 

 Class Number Mean    Number Mean 
LULC range of patch    of patch 
class (sq. km) polygons  size SD  Median  Mode polygons size SD  Median  Mode 
 

AG 
  <50  23,311  0.76  3.02  0.05  0.01  22,830  0.82  3.15  0.01  0.01 
  50–100  50  68.36  12.06  66.90   47  70.61  13.42  70.50 
  100–200  27  136.88  30.18  133.81   32  139.85  31.60  130.16 
  200–500  25  318.17  88.02  295.39   24  317.05  83.18  305.30 
  500–1000  17  674.46  119.47  661.66   14  675.22  100.53  662.87 
  1000–10,000  9  3,243.99  2,139.58  2,238.45   11  2,927.69  2127.63  2073.58 
  >10,000  9  55,835.43  40,707.92  41,410.40   10  50,146.2  40,397.53  36,861.76 
 
DDF 
  <50 20,337 0.65 3.03 0.02 0.01 10,221 1.22 4.10 0.10 0.01 
  50–100 43 71.25 13.59 71.36  44 68.71 13.65 65.65 
  100–200 19 145.73 33.95 141.10  25 148.81 28.56 149.80 
  200–500 18 329.90 91.92 315.95  16 322.48 88.42 307.49 
  500–1000 6 742.36 142.03 754.64  8 736.91 181.68 792.69 
  1000–10,000 9 2,932.52 2,250.30 1,930.47  9 2,402.34 1,406.47 2,221.78 
  >10,000  1  24,222.78     1  21,322.3 
 
MF 
  <50 6,288 0.29 1.98 0.02 0.01 3,279 0.46 2.68 0.03 0.01 
  50–100 7 59.45 6.51 56.18  8 65.12 13.67 61.68 
  100–200 7 108.61 4.59 110.12  7 119.64 18.90 113.49 
  200–500 6 292.05 89.13 260.73  5 317.71 125.73 291.61 
  500–1000 5 719.38 76.18 693.92  5 749.87 143.31 735.58 
  1000–10,000 1 1,833.71    1 2,032.89 
 
ENF 
  <50 37,913 0.13 1.15 0.01 0.01 25,423 0.21 1.55 0.02 0.01 
  50–100 20 70.81 14.50 72.23 86.89 9 66.39 9.78 64.36 
  100–200 6 149.81 40.14 153.72  8 158.90 31.08 164.81 
  200–500 1 493.56    1 366.52 
 500–1000 2 831.52 164.43 831.51  2 694.60 261.06 694.59 
  1000–10,000 2 1,037.80 16.16 1037.79  2 1,163.44 102.99 1163.44 
 
EBF 
  <50 20,688 0.10 0.81 0.01 0.01 12,629 0.16 1.13 0.03 0.01 
  50–100 1 63.16    1 67.36 
  100–200 2 188.48 9.63 188.48  1 184.49 
  200–500      1 202.11 
 
MG 
  <50 103 3.54 7.59 0.71 0.01 104 3.27 7.31 0.66 0.01 
  50–100 4 85.74 13.21 88.36  4 85.74 13.21 88.36 
  100–200 1 163.68    1 163.68 
 
DEG 
  <50 3,009 1.07 2.61 0.26 0.00 2,706 1.26 3.06 0.31 0.00 
  50–100 2 84.27 12.63 84.26  2 56.11 8.46 56.11 
  100–200 2 111.82 16.41 111.81  2 126.09 3.77 126.09 
  200–500 2 290.46 57.27 290.45  2 322.23 15.52 322.23 
 
PL 
  <50 45,515 0.23 1.02 0.07 0.01 44,959 0.26 1.08 0.08 0.01 
  50–100 2 76.96 8.75 76.96  3 81.94 9.67 87.30 
  100–200 2 154.74 38.41 154.73  3 135.56 18.24 127.57 
  200–500 2 322.20 42.53 322.19  4 278.13 74.28 273.92 
  500–1000 1 806.16 

(Contd) 
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Table 6. (Contd) 

  1975  2010 
 

 Class Number Mean    Number Mean 
LULC range of patch    of patch 
class (sq. km) polygons  size SD  Median  Mode polygons size SD  Median  Mode 
 

SL 
  <50 59,671 0.46 2.33 0.02 0.01 43,699 0.64 2.70 0.04 0.01 
  50–100 60 69.18 14.07 64.93 52.28 53 70.39 15.14 66.56 52.28 
  100–200 18 135.21 29.31 124.93  20 137.55 33.64 125.71 
  200–500 8 270.35 65.45 241.92  7 274.38 61.60 241.99 
 500–1000 2 580.01 54.47 580.00  3 563.40 40.36 540.69 
  1000–10,000 3 2,002.10 624.11 1,992.00  3 1,890.02 757.57 1,910.87 
 
GL 
  <50 28,300 0.18 1.33 0.01 0.01 9,459 0.59 2.41 0.03 0.01 
  50–100 17 69.55 13.98 69.75  17 77.40 13.74 80.06 
  100–200 4 138.02 39.76 133.92  4 115.63 16.84 109.56 
  200–500 1 269.01    1 270.40 
 500–1000 1 515.53    1 532.26 
 
WL 
  <50 30,100 0.37 1.62 0.05 0.01 26,934 0.38 1.60 0.06 0.01 
  50–100 19 68.87 13.81 64.90  16 68.63 11.84 65.53 
  100–200 8 138.25 29.58 128.74  9 133.37 29.21 121.39 
  200–500 5 316.22 110.08 306.79  4 288.78 124.93 239.44 
` 
WB 
  <50 38,036 0.22 1.24 0.03 0.01 39,749 0.22 1.27 0.04 0.01 
  50–100 6 60.23 8.59 57.05  8 65.22 15.78 58.73 
  100–200 4 139.23 29.78 140.29  5 126.31 26.56 120.29 
  200–500 4 320.40 61.01 306.67  4 319.95 81.30 336.37 
  500–1000 2 895.44 40.67 895.44  1 888.69 
  1000–10,000 1 9,351.16    1 9,853.81 
BU 
  <50 72,722 0.15 0.55 0.08 0.05 74,722 0.17 0.89 0.08 0.05 
  50–100 1 57.60    12 66.91 10.37 65.52 
  100–200 2 138.43 34.09 138.42  5 148.19 32.89 144.35 
  200–500 1 230.67    1  447.92 
 500–1000      2 813.93 55.10 813.92 
 
SI 
  <50 1,474 0.21 1.29 0.01 0.01 855 0.33 1.51 0.03 0.01 
  50–100 5 64.66 15.01 65.89  5 64.64 15.03 58.17 
  100–200 1 155.84    1 155.82 
  1000–10,000  3  2,275.18  1,062.9  2,869.89   3  2,284.28  1,073.0  2,609.68 
 
Total   387,954      318,068 
 

 
year. Higher number of patches in plantations with the 
smallest patch size indicates the forest plantations under-
taken as gap-filling activities by the State Forest Depart-
ment. Although the number of forest plantations with the 
smallest patch size decreased from 45,515 to 44,959  
during 1975–2010, patches with moderate patch size (50–
500 sq. km) increased from 6 to 10. Similar trend was  
observed in all other LULC classes, except water body 
and built-up land. 
 Highest mean patch size was observed in agricultural 
land, which decreased from 55,835.43 to 50,146.25 sq. km 
during 1975–2010; while the number of patches increased 
from 9 to 10 (Table 6), indicating expansion of agricul-

tural land. Similarly, mean patch size in deciduous forests 
decreased from 24,222.78 to 21,322.36 sq. km during the 
study period, which could be attributed to forest loss due 
to degradation, deforestation and human interference in 
the forests sharing non-forest edge. Highest mean patch 
size in built-up land in 1975 was 230.67, which increased 
to 813.93  sq. km in 2010, which highlights intensive de-
velopment in human settlements in the basin. The highest 
mean patch size in water body was 9351.16 sq. km in 
1975, which increased to 9853.81 sq. km by 2010. This 
could be due to development of dams and canals in the 
basin during the last 35 years. The highest patch size in 
mixed forest (MF) also showed similar pattern with  
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increase from 1833.71 to 2032.89 sq. km during 1975–
2010. This could be attributed to 77 sq. km increase in 
MF during the period. The highest patch size in scrubland 
and wetland was 2002.1 and 316.22 sq. km in 1975, which 
reduced to 1890.02 and 288.78 sq. km by 2010 respec-
tively. This could be due to conversion of 2993 sq. km of 
scrubland and 2310 sq. km of wetland to agricultural land 
during the period. 
 Understanding landscape dynamics in IGRB provides 
insights into the issue of rapid change in this region due 
to the ‘green revolution’, population explosion, industrial 
development and urbanization. Over expanding agricul-
tural and built-up land pose a threat to the forest vegeta-
tion in the surrounding regions, as revealed by the study. 
The landscape dynamics in IGRB during 1975–2010 
demonstrates a prominent increase in class area, particu-
larly in agricultural land, built-up land and forest planta-
tions; while there is a decrease in forests, mangroves, 
scrubland, wasteland and waterbody. The highest changes 
were observed in the built-up class, i.e. with 45.03% in-
crement. Agricultural practices have rapidly grown in this 
region after the ‘green revolution’ in 1960s. Most of the 
forest cover has been converted to agriculture and built-
up area. Rapid urbanization and industrialization are the 
main causes of expansion of settlement in the study area. 
The possible causes of increase in built-up land might be 
attributed to increase in population, urbanization, indus-
trial development and economic development of the area. 
The increase in degraded forest, grasslands and mixed 
forests indicates degradation of forest. A general trend in 
the context of degradation of natural ecosystems has been 
observed in the study, which indicates conversion of dry 
deciduous forest and mixed forests to degraded forests, 
followed by conversion to scrubland/grassland and waste-
land and finally take over of the land for the purpose of 
agricultural practices. Evergreen needle-leaved forest and 
evergreen broadleaved forest have experienced minimum 
change because these are the dominant ecosystems in 
western Himalayan forests and are less exposed to human 
interference as compared to deciduous forest. 
 The LULC classification scheme adopted here has 
proved to be useful, as it has captured the changes appro-
priately. On-screen visual interpretation-based LULC 
maps generated under the study for 1975 and 2010 are 
more than 85% accurate, which could be utilized as base-
line maps for future studies on agriculture, hydrology, 
climate change and biodiversity. The landscape dynamics 
in IGRB demonstrates the present status of the river basins 
in other developing countries, which are facing various 
challenges due to natural and anthropogenic climate 
change. Agricultural lands covered the highest area 
(>70%), where low to medium-sized patches expanded 
and patches of higher size had slightly reduced in size 
over past decades. Thenkabail et al.20 using MODIS data-
sets of 2001 and 2002, observed that approximately 60% 
of land cover in GRB is dominated by agricultural lands. 

Major change was observed with the expansion of agri-
cultural lands and human settlements and depletion of 
forests. Moors et al.21 project 90% growth in irrigated  
agriculture by 2020. Utility of visual interpretation tech-
nique and medium-resolution satellite imageries proved 
effective in capturing the built-up land that has shown the 
highest increase in percentage area. The increase of forest 
plantations is a positive sign in the basin, though degra-
dation and loss of forest area was reported in terms of 
landscape indices. In general, the aggregation of agricul-
tural patches and reduction of forest patches in small to 
medium sized patches was observed. We argue the utility 
of on-screen visual interpretation technique in favour of 
LULC mapping to achieve absolute accuracy in such a 
heterogeneous landscape like GRB, as it incorporates the 
interpreter’s knowledge into the classification and mapping 
exercise. We appreciate the free availability of Landsat 
imageries having very good radiometry for scientific  
exercises that has substantially minimized the cost. We 
hope that the present study will provide insights in under-
standing landscape dynamics that could help in designing 
an effective land-use policy for the IGRB. 
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Studies on remating behaviour in the  
Drosophila bipectinata species complex:  
evidence for sperm displacement 
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In Drosophila bipectinata female remating with respect 
to productivity and sperm displacement was studied 
by employing two mutant strains and a wild-type 
strain. The comparison of productivity between once-
mated (control) and remated females revealed that the 
productivity of remated females is significantly higher 
than that of once-mated females in all the crosses 
showing increased productivity after remating. The 
P2 values (proportion of second male progeny pro-
duced after remating) were calculated to test sperm 

displacement in each cross of remated females, which 
range from 0.60 to 0.67 extending the evidence for 
sperm displacement in D. bipectinata. 
 
Keywords: Drosophila bipectinata, female remating, 
postcopulatory sexual selection, sperm displacement. 
 
WHEN a female insect mates with multiple males their 
ejaculate may temporally overlap1, generating intrasexual 
conflict between sexes over paternity2, which is an indi-
rect consequence of female remating, selection on male 
traits that enhance competitive fertilization success3–5 and 
selection on female traits that mediate cryptic female 
choice6,7. These selective pressures collectively constitute 
postcopulatory sexual selection which generates variation 
in male and female behaviour8. Postcopulatory sexual  
selection includes both male–male competition (sperm 
competition) and female choice (cryptic female choice)7 
and plays a profound role in population divergence9,10. 
Traditionally, sperm competition has been seen as an  
intra-sexual conflict with the female being an inert arena 
in which the conflict occurs9. In the reproductive tract, 
females exert choice (cryptic female choice) on the sperm 
and select the most compatible sperm. However, sperm of 
the males compete among themselves for fertilizing the 
eggs and the one which is superior wins the battle. Thus 
both males and females play a role in the selection  
process. 
 The existence and relevance of sperm competition in 
Drosophila has been a contentious issue in evolutionary 
genetics10. The phenomenon of sperm competition occurs 
in many insect species, particularly in Drosophila females 
because of: (i) ability of females to store sperm from dif-
ferent males11–14, (ii) the highly efficient use of stored 
sperm at fertilization13,15, and (iii) the high probability of 
multiple mating9. After remating it has been observed 
that the sperm from the last (or second) male usually 
takes precedence over those of previous males and pre-
ferentially fertilizes subsequent eggs, a phenomenon known 
as sperm displacement or sperm precedence16. 
 The study of sperm competition has centred around the 
question of whether females tend to remate only after 
most of the stored sperm has been utilized, i.e. sperm  
dependence of remating14, or whether remating occurs 
relatively rapidly and before the first male sperm has 
been substantially depleted5. Most studies of postcopula-
tory sexual selection have focused on the pattern of 
sperm precedence, such as the proportion of progeny 
sired by the second male in a double mating trial (P2). 
The P2 value varies from 0 to 1. A P2 value of 0.5 is usu-
ally taken as evidence that the sperm of the two males are 
equally mixed in store. Whereas P2 value of 0 or 1 may 
indicate that the sperm of the first or second males has 
gained complete precedence over that of other males, or 
that sperm from the first or second male has become  
depleted or lost9. 


