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Nonlinear geostatistics is commonly used in ore grade 
estimation and seldom used in lithological characteri-
zation. Categorization of lithological units is essential 
in ore grade estimation, and this can be done based on 
the lithological information obtained from drill-hole 
data. In general, a conventional classification method 
was used to delineate different lithological units using 
geological cross-sections derived from borehole logs. 
In this study, we suggest an approach based on geosta-
tistical nonlinear indicator kriging (IK) to delineate 
different lithological units of an iron ore deposit. Iron 
ore has been broadly grouped into eight litho units 
based on physical and chemical characteristics of the 
core samples recovered from drill holes during explo-
ration stage. IK helps in the construction of litho maps 
for different benches of the mining deposit. Fe grades 
were estimated using ordinary kriging model and 
grade maps were prepared for all the benches of the 
deposit. A comparison was done between the grades of 
each litho type resulting from the two methods, i.e. IK 
model and geological cross-sectional model and the 
relative merits of the IK approach have also briefly 
discussed. 
 
Keywords: Grade estimation, indicator semi-variograms, 
indicator kriging, lithological maps, nonlinear geostatistics. 
 
ALTHOUGH geostatistical methods are widely used in 
mineral resource estimation across the world, in India its 
application is not very common and if at all used it is  
restricted to linear geostatistical methods. These geostatisti-
cal applications take lesser time in computing the estimates 
and also give more accurate results when appropriate  
input parameters are used. The advantage of these methods 
is that in addition to kriged estimates of a variable, the error 
of the estimate can also be assessed in the form of kriging 
variance1. This also provides an alternative tool for vali-
dation of spatial modelling results. In view of this, we 
make an attempt in this communication to apply nonlinear 
geostatistical methods for delineation of different litho 
units in an iron ore deposit. 
 In mineral resource estimation, it is important to clas-
sify the mineral deposit into different lithological units. 
Inaccurate categorization of litho types in a block model 

will have negative impact on resources estimation as bulk 
density of various lithological units varies. However, the 
classification cannot be properly done on a point-by-point 
or block-by-block basis as it ignores the geological conti-
nuity2. Thus, the modelling of lithological domains is a 
critical step in mineral reserve evaluation3. In any  
deposit, the lithological information is available only at 
the exploratory borehole locations and using this informa-
tion, spatial interpolation of lithological units can be done 
to get information on litho types of each block. 
 In the conventional classification method, the lithologi-
cal type was assigned to blocks using a geological cross-
sectional model approach. In this approach, sectional  
interpretations are constructed, generally orthogonal to 
the strike of mineralization. Each separate litho intersec-
tion on each drill hole is allocated its own volume of in-
fluence, which usually extends halfway to the next drill 
hole up and down dip, and halfway to the next section in 
each strike direction4. Based on these cross-sections, geo-
logical models (solid models) are constructed for each 
lithological unit and blocks of each litho type are obtained. 
Further, bench plans and grade maps are also prepared 
using these cross-sections. 
 The geological cross-sectional method mostly relies on 
interpretation of the available drill hole data and does not 
account for the uncertainty in the spatial extent of the 
lithological units3. An alternative model has been sug-
gested by Chatterjee et al.5, in which lithological type is 
assigned to blocks using a nonlinear geostatistical indica-
tor kriging (IK) method. In this approach, a probabilistic 
model based on IK is used to map the probabilities of  
occurrences of the litho units within the deposit, which 
reflects the spatial extent of the lithological units at  
unsampled locations. 
 This concept of probabilistic modelling of lithological 
domains and its application to resource evaluation of 
copper deposit was discussed by Emery and Gonzalez3, in 
which they applied probabilistic models based on condi-
tional simulation. Pasti et al.6 have also used simulation 
approach for modelling lithological domains for a Brazil-
ian iron ore deposit. They state that delineation of litho 
units is conventionally based on vertical and horizontal 
sections interpreted by a mine geologist, and in more  
advanced cases, geostatistical methods such as IK and/or 
simulations are used which allow to automate the model-
ling process. These methods are probabilistic and use 
variogram models to represent the geological continuity of 
each litho unit. 
 IK is an estimator applied on a set of variables whose 
values are modified according to a nonlinear transform, 
and it transforms each value of the set of variables into 
indicator values7. The main advantage of IK is that it is 
nonparametric and the distribution function can be esti-
mated, which makes it feasible to determine the uncer-
tainties and infer the attribute values where there are no 
samples8. 
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 A good knowledge of grade distribution within an ore 
body is essential to assess the economic feasibility of 
mine production. The geostatistical evaluation of ore  
deposit avoids economic failures9. In the present study, 
spatial modelling of litho units is investigated and IK is 
used for assigning the litho types in the block model. A 
comparison is made between the estimates of IK model 
and geological cross-section model for different litho-
logical units and also with exploratory data. The delinea-
tion of litho units and evaluation of grade distribution in 
hematite iron ore deposit is presented. 
 The Bailadila iron ore deposit trends in NE–SW direc-
tion with moderate to steep southeasterly slope and forms 
a cliff towards the north. The deposit has a strike length 
of 1600 m and width that varies between 120 and 975 m. 
The enriched ore within the banded iron formation (BIF) 
is concentrated in synclinal structures as swelled por-
tions10. 
 The Bailadila iron ore series consists of iron ore, BIF, 
ferruginous shales, phyllites, tuffs and quartzites. Meta-
basaltic traps with tuffs and cherts underlie the above suit 
of rocks (i.e. Bengpal series), and granite and gneissic 
rock formations underlie the Bailadila iron ore deposit. 
The basal metabasaltic lavas, dolerite intrusions are en-
countered along the eastern foothills of the range. Meta-
sedimentary sequence of Bailadila group is divided into 
three subgroups, which comprise of five stratigraphic 
formations, namely Bhansi metabasalts and metapelites,  
Bacheli metasiliciclastics (feldspathic quartzite), East  
Ridge shale/slate, Loha conglomerates and shales, and 
Kailash Nagar Formations in ascending order11. 
 
 

 
 

Figure 1. Distribution of exploratory boreholes in the study area. 
Boreholes are located in regular grids with an average spacing of 
100 m. 

 The iron ore data were obtained from 4537 samples of 
93 vertical boreholes (Figure 1) drilled for exploration 
purpose. The boreholes were spaced in a grid pattern with 
a spacing of 60–120 m (average 100 m) between each 
borehole. The depth of boreholes varies from 13.75 to 
169.25 m, with an average depth of 97.5 m. The iron ore 
is associated with eight different lithologies such as steel 
grey hematite (SGH), blue grey hematite (BGH), lami-
nated hematite (LH), lateritic/limonitic ore (LO), blue 
dust (BD), banded hematite quartzite (BHQ), shale (Sh) 
and transition zone (TZ). For the purpose of block model-
ling, the deposit was discretized into various blocks with 
the size of each block being 25  25  12 m (length  
width  height). Although data on Fe, SiO2, Al2O3 and 
LOI variables are available, we have chosen only Fe con-
tent for geostatistical characterization of the ore deposit 
in the present study. 
 Statistical analysis of the data was undertaken to un-
derstand the distribution of sample grades. Fe content 
was chosen as a regionalized variable for grade estima-
tion. The basic statistical parameters and frequency dis-
tribution (histogram) of the raw data are shown in Figure 
2. It can be seen from the figure that Fe is skewed to-
wards the left side, which may be due to higher amount 
of silica in a few samples. Further, basic statistics and 
histograms (Figure 3) of the assay data of Fe variable 
were calculated for each litho type. 
 Compositing is a procedure in which sample assay data 
are combined by computing a weighted average over 
longer intervals to provide a smaller number of data with 
greater length for use in developing the resource esti-
mates. Irregular length assay samples are composited to  
 
 

 
 

Figure 2. Histogram showing grade distribution of Fe% in the bore-
hole samples. Majority (85%) of the samples exhibit Fe grade >60%; 
9% of samples exhibit 50–60%, and the remaining samples exhibit 
<50% Fe grade. 



RESEARCH COMMUNICATIONS 
 

CURRENT SCIENCE, VOL. 108, NO. 3, 10 FEBRUARY 2015 415 

 
 

Figure 3. Histograms showing grade distribution of Fe% in the borehole samples of different litho units. Steel grey hematite (SGH), blue grey 
hematite (BGH), laminated hematite (LH), lateritic/limonitic ore (LO) and blue dust (BD) show very high-grade Fe% varying between 55% and 70%, 
whereas banded hematite quartzite (BHQ) and shale show low-grade Fe values. 
 
 

Table 1. Basic statistical parameters of assay data (n = 4482) and composited data (n = 719) of Fe% in different  
 litho units 

 Sample Mean Standard deviation 
 

Litho type Assay Composited Assay Composited Assay Composited 
 

SGH 585 65 68.19 67.58 1.49 1.78 
BGH 1158 225 68.20 68.05 1.28 1.74 
LH 1077 157 65.84 65.25 2.03 2.70 
LO 334 35 58.55 60.38 2.80 2.11 
BD 833 163 67.69 66.95 1.61 2.51 
BHQ 215 38 51.40 53.89 8.27 5.75 
Shale 209 36 40.69 45.09 12.71 10.12 
TZ 71 6 61.27 60.49 1.90 1.86 

SGH, Steel grey hematite; BGH, Blue grey hematite; LH, Laminated hematite; LO, Lateritic/limonitic ore; BD, 
Blue dust; BHQ, Banded hematite quartzite; TZ, Transition zone. 

 
 
provide equal-sized data for geostatistical analysis. In this 
study, assay data were composited to a bench height  
of 12 m, resulting in 719 composite samples. Litho type  
assigned to the composited sample is the predominant 
lithology occurring in the original samples within that 
composited length. Table 1 presents the summary statis-
tics of assay data and composited values of Fe% for each 
litho type. It is observed from the composited data that 
the lithological unit TZ has only six samples, which are 
not significant for modelling and thus it is ignored for 
further analysis. 
 Geostatistics has been used widely to estimate the 
grades of various mineral deposits such as iron ore12–14, 
copper15, gold16, limestone5. IK, a nonlinear geostatistical 
technique and a non-parametric counterpart of ‘ordinary 
kriging’, is an estimation technique applied to attributes 

with non-Gaussian distribution. The attributes are trans-
formed according to nonlinear mapping and codified by 
means of indicator8. IK can be used for both numerical 
data and categorical data such as Fe grade and lithology. 
While using IK for categorical data such as lithological 
type, a series of indicator values corresponding to each 
lithological type is chosen. These indicator values are 
used to build up numerically the probability of occur-
rence for different lithologies at each estimation point. IK 
process is carried out in three steps as discussed below. 
 Indicator transformation: Composited data in each of 
the available sample location are transformed into zeros 
and ones. It is ‘1’ if the data belong to the particular litho 
type, and ‘0’ if the data do not belong to that particular 
litho type. A categorical indicator transformation is  
carried out for each of the seven lithological units of the 
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Figure 4. Indicator variogram models for each litho type. The variograms of seven litho units show good spatial structure with 
low nugget values. 

 
 

Table 2. Indicator semi-variogram parameters for different litho units 

 Structure 1 Structure 2 
 

Litho type Nugget effect Model 1 Sill Range (m) Model 2 Sill  Range (m) 
 

SGH 0.008 Exponential 0.060 75 Spherical 0.020 300 
BGH 0.050 Exponential 0.150 100 Spherical 0.010 400 
LH 0.025 Exponential 0.106 100 Spherical 0.034 300 
LO 0.005 Exponential 0.039 75 Spherical 0.001 250 
BD 0.030 Spherical 0.110 50 Spherical 0.036 200 
BHQ 0.015 Spherical 0.012 125 Spherical 0.022 400 
Shale 0.017 Exponential 0.006 150 Spherical 0.021 550 

 
 
deposit under investigation. At a sample location x in the 
deposit, for a particular lithological unit Li, an indicator 
transformation is designated by the following equation. 
 
 Ii(x) = 1  if x  Li, 
 

   = 0  otherwise, 
 
where i varies from 1 to 7 lithological units. The compo-
sited data are transformed and a different set of indicator 
data generated for each lithological unit. 
 Indicator semi-variogram models: Indicator semi-
variograms for each lithological unit provide better results 
in quantifying the spatial variability of the lithology and 
in characterizing the spatial continuity of samples. How-
ever, Soares17 used single average semi-variogram model 
for determining lithofacies in a petroleum reservoir as he 
found that this saves time. Chatterjee et al.5 have also 
used a single average semi-variogram model for all the 
lithological units, instead of separate semi-variogram 
models, assuming the same spatial continuity for all 

lithological units. As this approach has limitations, we 
have constructed a separate indicator semi-variogram 
model for each lithological unit for obtaining a better  
spatial variability in the deposit. The omni-directional 
semi-variogram models of each lithological unit are 
shown in Figure 4. These semi-variograms are modelled 
with a small nugget effect and using two (exponential and 
spherical) structures, and the modelling parameters are 
given in Table 2. 
 Indicator kriging: IK is carried out using the corre-
sponding indicator semi-variogram as a structural func-
tion. An IK estimate always lies in the interval [0, 1], and 
can be interpreted as a probability of the block of a spe-
cific litho type18. The probability of occurrence of each 
litho type in all the blocks of the deposit using corres-
ponding indicator data and semi-variogram model is  
estimated using kriging. 
 The lithological maps were prepared using indicator 
kriged estimates as suggested by Deutsch and Journel7, 
and Chatterjee et al.5. In this study, we have assigned a 
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Figure 5. Lithological maps of four mining benches located at 1164, 1080, 996 and 912 m. Majority of 
the blocks in each bench are categorized into high-grade Fe litho units. Banded hematite quartzite and 
shale containing low Fe grade are observed in peripheral areas. 

 
 

 

 
 

Figure 6. Omni-directional semi-variogram models of Fe% for domain A in horizontal direction (a) and vertical direc-
tion (b). Both the semi-variograms show good spatial structure with nested models. Small nugget effect is observed in 
both the models. 

 
 
single litho type to each block based on the maximum 
probability of occurrence of kriged estimates of seven 
litho types in that block, and the lithological maps for all 
the 32 benches were constructed. The lithological maps 
of four benches at reduced levels (RL) of 1164, 1080, 996 
and 912 m are given as an example in Figure 5. 

 Grade models were prepared for the grade attribute Fe 
using ordinary kriging, and grade was estimated for each 
block based on neighbourhood samples. As the original 
data of Fe% are strongly skewed, composited data were 
categorized into two domains to avoid mixing of popula-
tions, based on the characteristics of the geology and 
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Figure 7. Omni-directional semi-variogram models of Fe% for domain B in horizontal direction (a) and vertical  
direction (b). Both the semi-variograms show reasonably good spatial structure with nested models. 

 
 

 
 

Figure 8. Grade maps of four mining benches located at 1164, 1080, 996 and 912 m based on kriged estimates. 
Majority of the blocks in each bench have estimated Fe >40% and very few peripheral blocks have estimated 
grade <40%. 

 
 
grade variation. Domain A8 – consisting of samples of 
lithological units SGH, BGH, LH, LO and BD, and  
domain B – consisting of samples from lithological units 
BHQ and shale. Omni-directional semi-variograms in the 

horizontal and vertical directions for both the domains 
were calculated and shown in Figures 6 and 7. The para-
meters used in modelling these semi-variograms are 
shown in Table 3. Grade estimation was carried out for 
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Figure 9. Kriged standard deviation maps for the benches located at 1164, 1080, 996 and 912 m. The central part of 
each mining bench has a very low grade varying between 1 and 3%. High variation in estimated grade is observed only in 
peripheral areas. 

 
Table 3. Domain-wise semi-variogram parameters of Fe% in horizontal and vertical directions 

Domain Direction Model 1 Model 2 Range 1 Range 2 Sill 1 Sill 2 NE 
 

A Horizontal Exponential Spherical 90 400 5.4 2.3 0.5 
  Vertical Spherical Spherical 50 90 2.1 3.6 1.5 

B Horizontal Exponential Spherical 100 325 40 36 9 
  Vertical Spherical Spherical 35 60 24 46 9 

Domain A, SGH, BGH, LH, LO and BD; Domain B, BHQ and shale. 
 

 
Table 4. Summary of estimated grade of Fe% in different litho units 

   Standard 
Litho type Blocks estimated Krig Fe% deviation 
 

SGH 1771 67.29 1.12 
BGH 12,018 67.83 1.27 
LH 9001 64.96 2.49 
LO 977 60.52 1.82 
BD 9515 66.57 1.69 
BHQ 3010 53.65 4.34 
Shale 2614 45.78 5.02 

 
each block using the composites of litho types of that par-
ticular block and the corresponding variogram model. 
 Summary of kriged grades of Fe% for different litho 
units is shown in Table 4. Based on kriged estimates of 
Fe grade, grade maps were generated for the 32 benches of 
the total deposit. Grade maps and kriged standard  

deviation maps of four benches, viz. 1164, 1080, 996 and 
912 m are shown in Figures 8 and 9. The correlation  
coefficient between kriged grades and kriged standard 
deviation of Fe was calculated. 
 A comparison was made between the results of the  
estimated grades obtained from geological cross-section 
model and IK approach in order to test and validate the 
estimated Fe grade for each litho type. As suggested by 
Keogh and Moulton18, the resulting model grade distribu-
tions were compared with input composited grade distri-
butions and raw data, i.e. borehole data to test whether 
estimated results are in line with the original data (Table 
5 and Figure 10). Isatis software (version 2013) was  
employed in computing the statistical and geostatistical 
parameters and graphical outputs. 
 The basic statistics of exploratory borehole data reveal 
that the overall Fe content is high in the deposit with 
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Table 5. Comparative results of estimated grades and exploratory data for Fe% 

 Estimated grades Exploratory data 
 

 Geological cross- Indicator Composited Assay 
Litho type section model kriged model data data 
 

SGH 67.11 67.29 67.58 68.19 
BGH 67.34 67.83 68.05 68.20 
LH 65.95 64.96 65.25 65.84 
LO 65.10 60.52 60.38 58.55 
BD 67.01 66.57 66.95 67.69 
BHQ 43.45 53.65 53.89 51.40 
Shale 36.24 45.78 45.09 40.69 

 
 

 
 

Figure 10. Comparative Fe kriged grade results obtained from both the methods – geological 
cross-sectional model (GCM) and indicator kriging model (IKM). The estimated grades match 
perfectly in all the litho units of SGH, BGH, LH and BD, except in LO where conventional esti-
mation model differs from the remaining methods. 

 
 
an average Fe grade of 64.62%. The histogram shows that 
majority (85%) of the boreholes exhibit Fe grade >60% 
and very few boreholes (6%) have Fe grade <50%  
(Figure 2); this may be due to high silica/alumina content 
in the samples. 
 It is observed in both assay and composited data that 
Fe grade variability is high in the litho types BHQ and 
shale compared to other litho types, viz. SGH, BGH, LH, 
LO and BD (Table 1 and Figure 3). This may be due to 
low Fe values in litho units BHQ and shale because of the 
presence of high impurities like silica and alumina, 
whereas other litho types consist of moderate to high Fe 
content (45–70%). Keogh and Moulton18 have also  
reported similar observations in the Hamersley iron ore 
deposits of the Pilbara region in Western Australia. 
 The indicator semi-variogram models of each lithologi-
cal unit (Table 2 and Figure 4) show good spatial  
structure with an average range of around 350 m. It is ob-
served from the lithological maps of 32 benches that the 
low-grade Fe bearing litho units BHQ and shale occur 

mostly in the peripheral blocks, whereas high-grade  
Fe-bearing litho units occur in the middle portion of the 
deposit (Figure 5). 
 It is observed from the semi-variogram models of Fe% 
that both the horizontal and vertical directions show good 
spatial structure with a small nugget effect in domain A. 
Anisotropy is observed in both the directions ranging 400 
and 90 m respectively (Table 4 and Figure 6). On the 
other hand, the horizontal and vertical semi-variograms 
of domain B are less structured (Figure 7), which may be 
due to low-grade Fe values and the presence of impurities 
like silica and alumina. 
 The kriged results of each lithological unit (Table 4) 
indicate that the litho units SGH, BGH, LH and BD in 
domain A exhibit Fe grade >65%, but LO has Fe grade of 
60.5%. Grade maps show that the Fe grade is distributed 
mostly between 65% and 70% and partly between 60% 
and 65% in the entire deposit, with overall grade of 64% 
(Figure 8). The medium grade (50–60%) Fe is scattered 
in pockets and low grade (40–50%) Fe occurs only in the 
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peripheral areas of the deposit. It is also inferred that the 
central part of the ore body has a very less kriged stan-
dard deviation compared to peripheral areas (Figure 9). 
The kriged grades of Fe and kriged standard deviation 
show strong negative correlation (–0.83), which indicates 
that most of the estimated grades of Fe have less error of 
estimate. Further, this suggests that IK model estimates 
are accurate and reliable. 
 On comparison of the results of both IK model and 
geological cross-sectional model (Table 5 and Figure 10), 
it is observed that the estimated mean grades of litho 
units SGH, BGH, LH and BD are the same, whereas esti-
mated mean grade of litho unit LO is a little higher 
(4.6%) in case of the geological model than the IK model. 
On the other hand, a significant difference in the esti-
mated grades of the litho units BHQ and shale is obser-
ved. However, these two litho units are considered as 
waste in mining practice. It is further observed that the 
results obtained from IK modelling are in accordance 
with the original drilling data and also composited data. 
 In this communication an application of nonlinear geo-
statistical IK approach19 for assigning litho types of a 
block model in a mineral deposit is presented. In assign-
ing the litho types in the block model, two approaches – 
geological cross-sectional model and IK model – are  
addressed. Our results suggest that both the methods give 
almost similar results of grade estimation of all lithologi-
cal units, except LO; however, the estimated grade of LO 
is in accordance with the original raw data. 
 Further, it is suggested that the IK approach is more 
suitable to assign the litho types in block model, and 
serves as an alternative approach to the traditionally used 
geological cross-sectional model. The advantage of the 
IK model is that it captures the spatial variability of 
lithological units, which is not possible using the conven-
tional methods. 
 The absolute performance of these methods could be 
tested with mine production data. We could not test this 
with actual mine data as mining is yet to be commis-
sioned in the study area. In the absence of mining data, 
we plan in future to conditionally simulate the iron grade 
values on a dense grid and then to average these realiza-
tions into smaller sized blocks from which the grade can 
be calculated. The results obtained in the present study 
can be compared with simulated values and be validated. 
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