
LIVING LEGENDS IN INDIAN SCIENCE 
 

CURRENT SCIENCE, VOL. 107, NO. 4, 25 AUGUST 2014 694 

M. S. Narasimhan 
 
T. R. Ramadas 
 

 
 
 
M. S. Narasimhan is a towering figure in 
Indian science. He has international 
reputation as an extraordinarily versatile 
and deep mathematician, successful 
teacher and an efficient and correct  
administrator. It was my good fortune to 
have been his student. In this article, I 
have tried to give an account of his life, 
personality, and above all, his work. I 
have made special effort to give a sense 
of his major mathematical achievements. 
 Narasimhan himself gives a vivid  
account of his career and the major in-
fluences on him in an interview with  
R. Sujatha (http://www.asiapacific-math-
news.com/03/0302/0025_0030.pdf). Two 
of his close collaborators have written 
essays about the man and his mathematics. 
The first of these is by C. S. Seshadri in 
The Collected Papers of M.S. Narasim-
han (ed. Nitsure, N.), Hindustan Books 
Agency, New Delhi, 2007. The second, a 
warm tribute by S. Ramanan to his 
teacher, is available as http://www.asia-
pacific-mathnews.com/03/0302/0021_ 
0024.pdf. 
 In Appendix 1, I give an informal in-
troduction to the mathematics that we 
will encounter. The reader can browse 
through this or refer to it as I describe the 
themes that run through Narasimhan’s 
work. We will repeatedly encounter a 
type of construct that is typical of mod-
ern mathematics – sets with structure. 
 I close this introduction highlighting 
two insights in particular that have 
proved to be of huge import. The first is 
that while classifying a class of algebro-
geometric objects, the semistable ones  

have to be identified first; then the whole 
family can be built, lego-style, starting 
with a ‘dominant’ part that parametrizes 
these semistable objects, and then adding 
the other ‘lego-pieces’, each built out of 
families of ‘smaller’ semistable objects. 
Each semistable object is an ‘extension’ 
of stable objects. The second insight is 
that stable objects are characterized as 
those that satisfy nonlinear (partial  
differential) equations. Chronologically, 
these came in reverse order. The second 
has its origins in the work of Narasimhan 
and Seshadri, while the first, sprang from 
the work of Harder and Narasimhan (both 
works are dealt with later in the text). 

A brief biography 

Narasimhan was born on 7 June 1932 in 
the small village of Tandarai, in what is 
now Tamil Nadu. The nearest school was 
5 miles away, and he used to drive a bul-
lock cart to class. One day he came out at 
lunch time to feed the bullocks as usual, 
and found that they had disappeared, 
having managed to free themselves from 
their tether and wandered back home. 
 I quote (with some small edits) from 
an article I wrote for The Mathematics 
Student: ‘From Tandarai Narasimhan 
went to Loyola College in Madras, where 
Father Racine (a Jesuit priest, French, 
and himself a student of Elie Cartan) no-
ticed the young man’s talents and  
advised him to go to the Tata Institute of 
Fundamental Research (TIFR) in Bom-
bay, where a School of Mathematics had 
just been founded by the visionary  
K. Chandrasekharan. He was accompa-
nied by fellow-student C. S. Seshadri. 
Chandrasekaran, an analyst and number 
theorist, was well aware of the winds of 
change blowing from France and else-
where. He encouraged his protegés to 
learn the most modern and powerful 
mathematics, and facilitated this by arran-
ging for a string of outstanding people – 
Warren Ambrose, Samuel Eilenberg, 
Laurent Schwartz and others – to lecture 
at TIFR. By all accounts, the combina-
tion of extraordinary teachers and bril-
liant students produced conditions that 
are seldom repeatable. After a little hesi-

tation, Narasimhan established himself as 
among the most original in the group, and 
went on to become one of India’s most 
distinguished mathematicians.’ 
 Here is the chronology: Narasimhan 
joined TIFR in 1953, spent the years 
1957–1960 as a CNRS Research Associ-
ate in Paris, got his Ph D in 1960 from 
Bombay University, was made Professor 
at TIFR in 1965, and retired from TIFR 
as Professor of Eminence in 1992. Then 
he moved to the International Centre for 
Theoretical Physics (ICTP) at the invita-
tion of Abdus Salam, to lead the mathe-
matics group there during 1993–1999. 
He returned to India in 2003, after a fur-
ther three years at the International 
School for Advanced Studies (SISSA), 
Trieste. He now lives in Bangalore and is 
a Distinguished Associate at the Indian 
Institute of Science (IISc), and Honorary 
Fellow of TIFR. 
 Narasimhan is a Fellow of the Indian 
Academy of Sciences, Bangalore; the In-
dian National Science Academy, New 
Delhi and the Royal Society (London) 
and a Chevalier de l’ordre National du 
Mérite (France). He is a recipient of  
the Shanti Swarup Bhatnagar Prize, the 
Third World Academy Award for 
Mathematics, the Padma Bhushan and 
the King Faisal International Prize for 
Science. He was the Founder-President 
of the National Board for Higher Mathe-
matics in India. He has been President of 
the International Mathematical Union’s 
(IMU’s) Commission on Development 
and Exchange, Vice-President of the  
International Center of Pure and Applied 
Mathematics in France and member of 
the Executive Committee (EC) of IMU. 
 Narasimhan is married to Sakuntala 
Narasimhan, a musician equally accom-
plished in the Carnatic and Hindustani 
traditions, journalist and consumer advo-
cate. They have two children. Mohan is a 
management professional based in Bos-
ton, and his older sister Shobhana is a 
physicist, Professor at the Jawaharlal 
Nehru Centre for Advanced Scientific 
Research, Bangalore. 
 To conclude this biography, let me  
attempt a reconstruction of the influences 
that shaped Narasimhan’s mathematical 
personality. Father Racine, certainly. Then 
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Warren Ambrose’s lectures at TIFR – 
Narasimhan recalls how Ambrose intro-
duced the rudiments of general topology 
in two lectures and then quickly went on 
to functional analysis and the Peter–Weyl 
theorem. A favourite quote: ‘Cauchy’s 
theorem [in complex function theory] is 
not a statement about holomorphic func-
tions, but one about the integral of a 
closed form.’ S. Eilenberg taught alge-
braic topology; ‘without ever mentioning 
the words categories or functors, [he] 
taught the whole course from a functorial 
viewpoint’. Another major influence was 
Laurent Schwartz, who instilled a life-
long fascination with partial differential 
equations. It is also a tribute to the broad 
culture of Schwartz that Narasimhan’s 
initiation into geometry was as a note-
taker for Schwartz’s lectures on complex 
manifolds. Narasimhan credits long con-
versations with K. Chandrasekharan and 
K. G. Ramanathan for his love of number 
theory and algebraic groups. 
 During a long spell in hospital in 
France, Narasimhan read through a pre-
liminary version of a foundational paper 
by Kodaira and Spencer on deformations 
of complex structures, and this laid the 
foundation for much of his later work. 

Fractional powers of elliptic  
operators 

While in Paris, Narasimhan collaborated 
with a young Japanese mathematician,  
T. Kotake, on his first major work. For 
those who know Narasimhan only as a 
geometer, a glance at this paper will be 
particularly striking. 
 For suitable domains and boundary 
conditions, the Laplacian, defined as a 
partial differential operator on smooth 
functions, has extensions as an un-
bounded, self-adjoint, positive operator 
on square-integrable functions. Consider 
such a positive self-adjoint realization of 
an elliptic operator in L2. For such an  
operator A and any complex number s, 
 
 

 

one can define As using the spectral de-
composition. Kotake and Narasimhan 
first proved that the kernels of these 
‘fractional’ powers are ‘very regular’. 
This result was used in the original proof 
of the Atiyah–Bott fixed-point theorem.  
 In the further study of the real analy-
ticity properties of these kernels, when 
the coefficients of the operator are ana-
lytic, the key was a remarkable theorem 
which guarantees that a function u is 
analytic, if and only if on every compact 
set the L2-norms of Aku, k  N satisfy 
Cauchy-type inequalities. This contains 
the well-known result that given an ellip-
tic differential operator with analytic co-
efficients, its solutions are also analytic. 

The universal connection 

When Narasimhan returned to Bombay, 
he met Ramanan, who had joined TIFR 
as a graduate student. Together, they pro-
ved a remarkable theorem in differential 
geometry, which I will now describe. 
The theorem applies to arbitrary princi-
pal bundles, but in this exposition I con-
sider bundles with unitary structure group. 
In this case, there is an equivalent state-
ment for complex unitary vector bundles, 
and this is what we will consider. 
 To set the stage, I need to introduce 
the universal bundle. Let  be a com-
plex separable infinite-dimensional Hil-
bert space. Fix a natural number r and 
consider the ‘grassmannian’ Gr() of r-
dimensional subspaces of . This is an 
infinite-dimensional manifold, each of 
whose points represents a r-dimensional 
subspace. (We can in fact consider the 
corresponding grassmannian in a finite-
dimensional Hilbert space of ‘large 
enough’ dimension, which is what  
Narasimhan and Ramanan did. The infi-
nite-dimensional formulation leads to 
slightly more felicitous formulations.) 
 There is a natural, ‘tautological’, com-
plex, unitary, rank r vector bundle r on 
Gr(). Namely, one associates to each 
point of Gr(), the subspace of  that it 
represents. The bundle r is ‘universal’ 
in the following sense: given any com-
plex, unitary, rank r vector bundle 
E  X, there exists a map  : X  
Grr(), such that E is isomorphic to the 
‘pull-back’ bundle  *r. In other words, 
there is a bundle map ̃ : E  r preserv-
ing metrics. Note that the map  is far 
from unique; in fact, homotopic maps  
induce isomorphic bundles. 

 This much is topology. Differential 
geometry comes into the picture with  
the following observation. The bundle 
r  Grr() carries a unique connection 
invariant under the unitary group U(). 
The theorem on universal connections 
mentions in this context that given any 
unitary connection  on E, there is a 
bundle map ̃: E  r compatible with 
connections. 
 The crux of the proof is a local argu-
ment which is illuminating already in the 
simplest possible case, that of a trivial 
line bundle on a disc; see the lemma in 
Appendix 2. I include this because (a) 
every mathematical exposition should 
contain a proof; (b) this one involves ele-
mentary calculus but is still not obvious, 
and (c) it illustrates one of Narasimhan’s 
strengths, finding the ‘toy’ example 
which holds the key to a problem. 
 The existence of universal connections 
has been used extensively – in the work 
of Chern–Simons, in the definition of the 
Cheeger–Simons differential character, in 
work on super-connections and in the con-
text of stochastic differential equations. 

Stable and unitary bundles 

Mathematical theorems are rarely descri-
bed as discoveries. When they were barely 
30 years old, Narasimhan and Seshadri 
made a remarkable discovery at the 
crossroads of the algebraic and complex 
analytic geometry of the era. Inspired by 
close readings of the works of Kodaira–
Spencer and André Weil, Narasimhan 
and Seshadri began an investigation of 
the space of irreducible unitary vector 
bundles of given rank r on a Riemann 
surface of genus g. They proved that this 
space has a natural structure of a com-
plex manifold of dimension r2(g – 1) + 1. 
 Fortune favours the brave. Here is how 
the thrilling tale then unfolded: 
 
 David Mumford, who was engaged in 

combining the older ideas of Hilbert 
concerning invariant theory with 
modern foundational work of Gro-
thendieck in algebraic geometry, in-
troduced the algebra-geometric notion 
of a stable vector bundle and an-
nounced the result that the space of 
stable bundles (of rank r on a curve of 
genus g) is naturally an algebraic  
variety of dimension r2(g – 1) + 1. 

 This definition and result suggested  
to Narasimhan and Seshadri that  
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irreducible unitary bundles and stable 
bundles (of degree zero) were essen-
tially the same objects (the term  
‘degree’ is explained in Appendix 1). 

 The direction irreducible and uni-
tary  stable of degree zero was not 
difficult. 

 In a tour de force, they proved the 
converse direction using a strategy 
that goes back to Klein and Poincaré, 
called the continuity method. 

 
The idea of the continuity method is the 
following. Since irreducible unitary bun-
dles are stable, there is a map from the 
moduli space of irreducible unitary rep-
resentations to the (connected) moduli 
space of stable bundles (of degree zero). 
An infinitesimal computation shows that 
(this map is complex–analytic and) the 
differential is an isomorphism, so the 
map is open. The heart of the proof is to 
show that the map is closed, which 
shows its surjectivity. 
 Since the definition of stability is so 
central to what follows, I will deal with 
this notion here. 
 
Definition 1. A holomorphic vector 
bundle E on a smooth Riemann surface is 
said to be semistable if for every proper 
holomorphic sub-bundle 0  F  E, we 
have 
 

 degree degree .
rank rank

F E
F E

  

 
If strict inequality holds, we say that E is 
stable. 
 The best way to motivate this defini-
tion is to prove the ‘easy’ implication 
above as an exercise in complex differ-
ential geometry, the key calculation  
being one that uses the Chern–Weil defi-
nition of degree in terms of curvature, 
and the principle that ‘curvature decreases 
in sub-bundles’. Two important algebro-
geometric consequences flow from this 
topological constraint. Namely, semista-
ble bundles form a bounded family, and 
this family, modulo isomorphism (strictly 
speaking, ‘s-equivalence’) can be embed-
ded in some projective space by a natural 
family of ‘theta-functions’. All this fol-
lows from Mumford’s geometric invari-
ant theory and the work of Seshadri. 

The moduli spaces UX(r, d) 

Riemann surfaces of a fixed genus g are 
parametrized by an algebraic variety of 

dimension g. The study of these para-
meter spaces goes back at least to Rie-
mann. Local coordinates (i.e. parameters) 
are traditionally called ‘moduli’, and the 
space itself called a space of moduli, or 
simply, a ‘moduli space’. 
 The theorem of Narasimhan and  
Seshadri focused attention on a new kind 
of moduli space associated to a fixed 
Riemann surface X. Fix two integers r 
and d, with r required to be positive. Let  
Ust

X(r, d) denote the set of isomorphism 
classes of stable bundles E on X with 
rank E = r and degree E = d. This is a 
smooth algebraic variety which is not 
compact unless the integers r and d are 
co-prime (i.e. without common divi-
sors) – note that in this case any semista-
ble bundle is guaranteed to be stable. If r 
and d have common divisors, one can 
compactify Ust

X(r, d) by adding points 
that correspond to ‘s-equivalence classes 
of (non-stable but) semistable vector 
bundles’. This construction is due to  
Seshadri. The resulting compact varieties 
are denoted UX(r, d). 
 A systematic study of the spaces 
UX(r, d) was begun by Narasimhan and 
Ramanan. Over a period of 10 years, in 
what Narasimhan has described as his 
most intense collaboration, they explored 
the geography of these moduli spaces 
and proved a number of basic facts about 
them. In the process they uncovered con-
nections with classical geometry and 
proved a 50-year-old conjecture. Their 
results and techniques (notably a tech-
nique they called the Hecke transform) 
have been revisited by others, notably in 
arithmetic geometry. 

The Harder–Narasimhan  
filtration 

We come next to a richly textured chap-
ter in modern algebraic geometry. Soon 

after the theorem of Narasimhan and  
Seshadri was proved, P. Newstead used 
it to compute the Betti numbers (i.e. the 
dimensions of the cohomology groups) 
of UX(2, d). G. Harder in turn, used the 
information to verify the Weil conjec-
tures (cf. Appendix 1) for this variety. 
Narasimhan and Harder then turned the 
mathematics on its head, used the Weil 
conjectures to extend Newstead’s com-
putations to higher rank. In the process, 
they discovered an important stratifica-
tion of the set (in fact, in modern lan-
guage, the stack) of all vector bundles. A 
‘stratification’ is a partition – division 
into disjoint subsets – with special geo-
metric properties. 
 The integers r, d will be taken to be 
co-prime. I will now describe the stra-
tegy of the computation, postponing the 
description of the strata to the end of this 
section. 
 In what follows, one has to work with 
moduli spaces of bundles with ‘fixed de-
terminant’. That is, one has to fix a holo-
morphic line bundle L of the relevant 
degree, and restrict oneself to vector 
bundles E such that det E ~ L. We will 
let UX(r, L) denote the moduli space of 
rank r bundles E with determinant L. 
 
 The Betti numbers of UX(r, L) depend 

only on the genus of X, rank r and 
degree d, so we can assume that the 
curve X and the line bundle L are  
defined over , and then this will be 
true for the moduli space UX(r, L) as 
well. 

 The variety UX(r, L) is smooth and 
compact – it is here that we use the 
fact that r and d have no common  
divisors – so the Weil conjectures  
apply. In other words, to determine 
the Betti numbers of the nonsingular 
complex variety UX(r, L), it suffices 
to consider the corresponding variety 

 
International Conference on Vector Bundles on Algebraic Varieties, TIFR, 1984. 
From left to right: M. F. Atiyah, B. V. Sreekantan and M. S. Narasimhan. 
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‘over q’ for some suitable family of 
finite fields and ‘count the q-rational 
points’. (When an algebraic variety is 
defined by equations with integer co-
efficients, and slightly more gener-
ally, a solution in a finite field q, 
with q a power of a prime p, is called 
a q-rational point. If q = p, these are 
just solutions modulo p.) Equiva-
lently, one needs to count the number 
Nq(r, d) (isomorphism classes) of sta-
ble vector bundles of rank r and de-
gree d with fixed determinant L. The 
requirement that the bundles be sta-
ble, and be defined over q, makes 
this number finite. 

 A classical result of Siegel (regarding 
the ‘Tamagawa number’ of the group 
SL(n)) yields a formula (the right-
hand side of which we simply denote 
R) for the sum: 

 

1 .
|Aut |E

R
E

  

 

  Here the sum is infinite and ranges 
over the set of isomorphism classes 
of all vector bundles – stable or other-
wise – defined over q such that  
det E ~ L. What makes the sum finite 
is the weight factor 1

|Aut | ,E  where  
Aut E is the group of automorphisms 
(‘symmetries’) of the bundle E and 
|Aut E| denotes its cardinality. 

 We write the last formula as a sum as 
a contribution from the finite set of 
stable bundles, and the rest. Noting 
that the group of automorphisms of a 
stable bundle is just the multiplica-
tive group of nonzero elements of q, 
we get  

 

stable not stable

1 1
| Aut | | Aut |E E

R
E E

  
 

not stable

1 1( , ) .
1 | Aut |q

E
N r d

q E
 

   

 
 (The notation Nq(r, d) is explained in 

the second bullet-point.) Rewriting, 
we get 

 

not stable

( , ) ( 1)

1 .
| Aut |

q

E

N r d q

R
E

 

   
  


 

 
  All the sums are over bundles E with 

determinant isomorphic to L. 

 This is where the Harder–Narasim-
han stratification enters the picture. 
The ‘biggest’ stratum consists of 
semistable bundles. Since r and d are 
assumed co-prime, these are all  
stable, and the count of these  
gives Nq(r, d). The other strata parti-
tion the set of non-stable bundles. 
This allows us to compute the term 
E not stable (1/|Aut E|) inductively in 
terms of Nq(r, d) for ranks r strictly 
smaller than r. 

 
The stratification has its origins in the 
Harder–Narasimhan (H–N) filtration of 
a non-semistable bundle, which I now  
explain. Consider first a rank 2 bundle E. 
If E is not semistable, by definition there 
exists a line subbundle L  E with  
2 degree L > degree E. Among all such, 
there is a unique L with the maximum 
degree, say d. This yields a canonical  
filtration 0  L  E. More generally, for 
a non-semistable E of arbitrary rank, 
there is a canonical filtration by sub-
bundles 
 
 0  E1  E2   Em – 1  Em = E, 
 
with the successive quotients being 
semistable and with decreasing slopes, 
 (E1) >  (E2/E1) >  >  (E/Em–1). The 
slope  (E) of a bundle E is 
 

 degree( ) .
rank

EE
E

   

 

The Harder–Narasimhan strata are de-
fined by grouping together into one stra-
tum all E with a given type of H–N 
filtration, the ‘type’ being the sequence 
of slopes and ranks associated with the 
H–N filtration. 
 The H–N filtration has been extremely 
useful in many other contexts in alge-
braic geometry and number theory. 

Representation theory 

During a year-long (1968–69) visit to the 
Institute for Advanced Study, Princeton, 
Narasimhan made foray into the repre-
sentation theory of real Lie groups, in 
joint work with K. Okamoto. 
 The most natural linear representations 
of a group are obtained by considering 
the action of the group on a set and then 
the associated action on (real or com-
plex-valued) functions on the set. Often 
there are natural subspaces of functions 
invariant under the action. For compact 

Lie groups, the Borel–Weil theorem real-
izes finite-dimensional irreducible repre-
sentations on the space of holomorphic 
sections of homogeneous line bundles on 
flag varieties. Physicists are familiar 
with the action of the Poincaré group on 
solutions of the wave equation. 
 A general conjecture of R. P. Lang-
lands regarding the realization of discrete 
series of Harish Chandra – which are cer-
tain important representations of a real 
noncompact Lie group G – predicted, in 
the hermitian symmetric case, that these 
representations would be realized on 
square integrable cohomology of certain 
holomorphic vector bundles on G/K. 
(Here K is the maximal compact sub-
group of G and the ‘hermitian symmetric 
case’ is when G/K admits an invariant 
complex structure.) This is altogether 
subtler than the Borel–Weil theorem, in 
that these spaces are non-compact and the 
representations infinite-dimensional and 
serious questions of analysis come into 
play. 
 The work of Narasimhan and Okamoto 
was the most significant step towards the 
proof of Langlands’ conjecture in general. 
 In the case of symmetric spaces which 
are not hermitian symmetric, a substitute 
had to be found for the Cauchy–Riemann 
equations which characterize holomor-
phic sections. It was Narasimhan’s idea 
to replace the Cauchy–Riemann equations 
with the Dirac equation. (Rather mod-
estly, he says ‘it was in the air’.) This he 
suggested to his student R. Parthasarathy. 
The resulting series of works were major 
landmarks in representation theory. 

Mathematical physics 

Mathematics and theoretical physics have 
always had a close relationship, though 
each field has its own ‘big questions’ and 
working style. (Narasimhan likes to em-
phasize that much of pure mathematics 
has its own internal dynamics.) 
 In the seventies, there began a particu-
larly fruitful period of interaction be-
tween the two disciplines. This began 
with the realization that a (classical) 
gauge field – for example, the electro-
magnetic potential A(x) – can and 
should be regarded as a connection one-
form. Artefacts like the ‘Dirac string’ 
that enters the description of a magnetic 
monopole disappear once it is realized 
that connections on nontrivial bundles 
provide a natural description. The study 
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of solitons and instantons required fur-
ther inputs from topology, and then came 
the discovery that algebraic and differen-
tial geometry can be deployed to under-
stand the solutions of the corresponding 
nonlinear partial differential equations. 
As physicists became familiar with the 
geometry, they incorporated relatively 
exotic geometric structures, for example, 
from the work of Chern and Simons. 
(This work uses crucially universal con-
nections.) Atiyah and Bott, investigating 
‘toy models’ of Yang–Mills theory,  
discovered bridges between infinite-
dimensional Morse theory and the theo-
rem of Narasimhan and Seshadri, as well 
as the computations of Harder and Nara-
simhan. Conformal field theory proved 
to involve representations of infinite-
dimensional Lie algebras and produced 
intriguing conjectures about ‘linear sys-
tems’ on moduli spaces of vector bun-
dles. In the past two decades, string 
theory has generated wonderful conjec-
tures relating enumerative geometry and 
modular forms. 
 Narasimhan was not indifferent to 
these developments. I joined the Tata  
Institute in 1977 as a research student in 
theoretical physics. P. P. Divakaran, my 
advisor, was one of Narasimhan’s friends 
and interlocutors, and persuaded him to 
give a series of lectures on vector bun-
dles, connections and characteristic 
classes. I was asked to be note-taker, and 
this proved to be a turning point in my 
career. I was a callow physics student, 
with a good training from IIT Kanpur 
and a taste for the formal. Over the next 
two years, I reported to Narasimhan my 
attempts to understand gauge theories 
(including the problems of gauge-fixing 
as revealed by the Gribov ambiguity) and 
Dirac’s theory of constrained systems. 
Then I watched in awe as he laid bare the 
geometry underlying the theory, in work 
that became the body of my thesis. First 
came the formal part, a succinct formula-
tion of the theory of constrained dynami-
cal systems in the language of symplectic 
geometry. Next came a careful descrip-
tion, using the tools of infinite-dimensio-
nal analysis, of the space of (irreducible) 
connections of appropriate Sobolev class 
as an infinite-dimensional principal bun-
dle, and a proof that this bundle is in 
general not trivial. (In this last result we 
were anticipated by I. M. Singer.) 
 We discovered that the ‘Coulomb 
gauge condition’ could be thought of as 
defining a connection – which we dubbed 

the Coulomb connection – on the infinite-
dimensional principal bundle of connec-
tions. Quite remarkably, in contrast to 
the abelian case when this connection has 
zero curvature and thus yields an actual 
gauge-fixing, the Coulomb connection is 
‘maximally non-integrable’ in the non-
abelian case. 
 There were other insights, including 
about ‘anomalies’, that I was too timid to 
pursue. 
 In the late eighties, the focus of theo-
retical physics shifted again, as it is wont 
to every ten years or so. It was discovered 
that conformal field theory (especially in 
the context of the Wess-Zumino-Witten 
(WZW) model) has much to with line 
bundles on the moduli spaces of vector 
bundles on curves. (In fact, this turned 
out to involve ‘parabolic bundles’, a con-
struct due to V. B. Mehta and Seshadri). 
These issues brought Narasimhan back to 
the subject. This was in important joint 
papers with J.-M. Drezet, S. Kumar and 
Ramanathan and the present author. 

Teacher and guide 

Narasimhan’s success as a mentor and 
guide is legendary. He played a crucial 
role in the formation and development of 
schools in algebraic geometry, differen-
tial geometry and Lie groups at the Tata 
Institute. Among his students were  
Ramanan, M. S. Raghunathan, V. K.  
Patodi and Parthasarathy. 
 There are many traits that go into mak-
ing a successful mathematician. Energy, 
perseverance, scholarship, clarity of 
thought and a mix of other less tangible 
ones. Narasimhan has all these in abun-
dance, but one does not feel overwhel-
med in discussions with him, because he 
approaches each problem from the 
ground up, with delicacy and determina-
tion. He seeks to understand the situation 
and to answer natural questions; but once 
he catches scent of a deep mathematical 
truth, is tireless in its pursuit. 
 His readiness to engage with younger 
colleagues led to extraordinary collabo-
rations in India and elsewhere, wherein 
he was simultaneously teacher, mentor 
and co-worker. In particular, Narasimhan 
has been seriously engaged with the geo-
metry community in China, and a num-
ber of young mathematicians whom he 
mentored at ICTP are now leading geo-
meters there. 
 Not too long ago, Narasimhan happily 
recounted a bit of mathematical consult-

ancy that he did from a hospital bed, 
which resulted in an acknowledgement 
for help with ‘the procedure utilized to 
generate all possible distinct two-
dimensional configurations of a given 
size and geometry, used for our density 
functional theory calculations’ in a paper 
(Marathe, M., az-Ortiz, A. D. and Nara-
simhan, S., Ab initio and cluster expan-
sion study of surface alloys of Fe and Au 
on Ru(0001) and Mo(110): Importance 
of magnetism. Phys. Rev. B, 2013, 88, 
245442.) with a rather unlikely title. 

Creating structures for promoting 
mathematics 

Narasimhan takes administration seri-
ously. He inspires devotion among ad-
ministrative staff, who find him clear, 
prompt, correct and helpful. Even during 
periods of intense research, I have seen 
him move seamlessly from mathematics 
to correcting the draft of a letter and 
back again to the blackboard. As Dean of 
Mathematics and a senior member of the 
faculty at TIFR, later as Head of the 
Mathematics Group in ICTP, and as 
member of important committees, he  
relished dealing with the challenges of 
managing real-world issues. I cannot do 
better than quote Narasimhan’s own 
words (in his interview with Sujatha): 
 ‘I was always interested in creating 
structures for promoting mathematical 
research in India and in developing coun-
tries. In India as Chairman of the Natio-
nal Board of Higher Mathematics and 
internationally as member of EC of IMU 
and President of IMU’s Commission on 
Development of Exchange, I had some 
experience in this direction…. 
 I enjoyed my work and career both in 
India and abroad; I had ample support 
from institutions in India and abroad for 
carrying out my personal research and 
for working for the development of 
mathematics. Working abroad at ICTP 
gave an opportunity to interact with 
young mathematicians from all over the 
world and help them in furthering their 
research. This, like my role in TIFR, 
gave me immense satisfaction.’ 

Scholar and bibliophile 

The word ‘bibliophile’ conjures up a pic-
ture of someone obsessed with dusty first 
editions, rather more interested in the 
condition of a book than its contents. As 
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such, it would not apply to Narasimhan, 
but it will have to do for want of a better 
term. 
 Apart from Carnatic and Western clas-
sical music, books – detective fiction in 
particular – and serious broadsheets are 
Narasimhan’s main diversion. During his 
years in Trieste, he used to travel down-
town to the train terminus to pick up 
Sunday supplements of the Italian finan-
cial paper Il Sole 24 Ore (which has a 
good cultural and literary section), The 
Times Literary Supplement, The New 
York Review of Books, Le Monde Diplo-
matique and The Guardian Weekly. (His 
politics is decidedly left-wing.) 
 Tamil literature is a passion. He stocks 
up during his visits to Chennai, some-
times timing his trips to catch the Chen-
nai Book Fair. 
 He has one of the most extensive col-
lection of mathematical books – treatises, 
collected works and old classic texts – 
that I have seen in private hands. The  
libraries at TIFR and ICTP owe their ex-
cellence in large part to his stewardship 
over decades. When Narasimhan is at 
ICTP, he is a familiar figure in the  
library, looking over the latest journals 
and books or renewing his acquaintance 
with the old masters. Particular favour-
ites are Poincaré and Hermann Weyl. 
 Let me use this opportunity to make 
widely known some sets of notes by  
Narasimhan. These are gems of mathe-
matical exposition. Items (2)–(4) below 
are available on-line; the others are not, 
but are well worth tracking down. 
 
(1) The standard conjectures on alge-

braic cycles. In Perspectives in 
Mathematical Sciences II, World 
Scientific, Singapore, 2009. 

(2) Borel–Weil theorem – notes of lec-
tures at the college on representation 
theory of Lie groups, ICTP, Trieste, 
1985 (http://cdsagenda5.ictp.it/full_ 
display.php?ida=a02103). 

(3) Differential geometry – notes of lec-
tures at the Summer School on Fibre 
Bundles and Geometry, ICTP, Tri-
este, 1982 (http://cdsagenda5.ictp. 
it/full_display.php?ida=a02335). 

(4) Deformations of complex structures 
and holomorphic vector bundles. In 
Proceedings of the Summer School 
on Complex Analysis, ICTP, Tri-
este, 1980; Lecture Notes in Mathe-
matics, 1982, 950. 

(5) Lectures on partial differential equa-
tions – course of lectures given at 

the TIFR Centre for Applied 
Mathematics, Bangalore, 1979. 

(6) Vector bundles on compact Rie-
mann surfaces. In Proceedings of 
the International Seminar Course on 
Complex Analysis and its Applica-
tions, Trieste (1975), International 
Atomic Energy Agency, 1976. 

Aphorisms and advice 

Narasimhan is rather spare with counsel. 
Over the years, though, some pieces of 
advice have stuck in my mind. These are 
worth repeating because of the weight of 
practical wisdom they carry. I omit 
quotes because I am not reproducing  
Narasimhan’s words verbatim: 
 

(1) (While learning new mathematics) 
do not spend too much effort on hard 
exercises; save your energy for re-
search problems. 

(2) (While studying or doing research) 
understand simple cases first. 

(3) Learn and think about any piece of 
mathematics from the most advan-
ced/sophisticated point of view you 
are capable of. 

(4) Administration is important and  
deserves application of thought. 

(5) While replying to an important letter 
or e-mail, sit on the draft for a day. 

(6) (As educator/researcher/administra-
tor) you have been helped by those 
who went before, so you should help 
those who come after. 

(7) At the beginning of the working day, 
sit in your office and do some rela-
tively concrete mathematics – say, 
compute a homotopy group – even if 
your work is going nowhere. If you 
are lucky enough to be in the midst 
of a project with its own momentum, 
contrive to end each day with a con-
crete task programmed for the next 
day. 

Conclusion, thanks and best wishes 

I close with the text accompanying the 
announcement of the King Faisal Inter-
national Prize for Science (2006): 
‘...Narasimhan’s work is primarily in  
algebraic geometry, particularly the  
theory of holomorphic vector bundles on 
compact Riemann surfaces. However, 
over the past 35 years, his work covered 
nearly all other aspects of mathematics, 

while maintaining its high originality and 
impeccable taste, and links with the 
works of the greatest mathematicians. 
 Narasimhan’s brilliant career as a 
mathematician and educator has taken 
him to major universities and institutions 
worldwide, and has won him the admira-
tion of the entire community of mathe-
maticians.’ 
 I am sure all of Narasimhan’s friends, 
collaborators and students, and those 
who have benefitted from his ideas and 
initiatives, join me in expressing deep 
gratitude and best wishes. 

Appendix 1 

A manifold of dimension n is a space 
whose points are locally labelled by n 
real coordinates – when two different 
sets of coordinates can be used, they will 
be related by a differentiable coordinate 
change. An elementary example is the 
sphere 2 of unit vectors in three-space. 
Associated to each point of a manifold is 
the tangent space at that point. In the 
case of 2, this is the tangent plane, a 
two-dimensional vector space. Even 
though the tangent spaces at any two dif-
ferent points of an n-dimensional mani-
fold are isomorphic as vector spaces 
(both being n-dimensional vector 
spaces), in general they are not naturally 
isomorphic. So there is no natural way to 
compare tangent vectors at different 
points. The solution is to consider the 
different vector spaces ‘together but 
separately’, and introduce the notion of 
tangent bundle. This is an example of a 
mathematical object that we will repeat-
edly encounter below, namely a vector 
bundle. 
 The study of vector bundles can be re-
garded as linear algebra with parameters.  
 A vector bundle is a family of vector 
spaces (all of the same dimension, the 
rank of the bundle) parametrized 
smoothly – in an appropriate sense – by 
points of a manifold (the base space of 
the bundle). To gain some intuition, let 
us try to picture a vector bundle of rank 
1, often called a line bundle. Think of a 
broom – a collection of midribs of coco-
nut leaves bound together by a string. 
Now make an abstraction in which every 
rib is infinitely extended and thought of 
as a one-dimensional vector space, each 
with its own origin (zero vector) – say, 
the point closest to the binding string – 
and its own rule of vector addition. Make 
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a further abstraction – and this might be 
a stretch for the non-mathematical 
reader – in which each strand of the 
broom is labelled. Then the set of labels 
is the base space of the bundle. 
 A length function on each vector space 
in the family is a metric, and a connec-
tion is a way of differentiating a path of 
vectors in the vector bundle. Prescribing 
a connection gives a rule for parallel 
transporting vectors along any path; the  
derivative of the path of vectors should 
be zero. A section of the bundle is a 
choice of a vector in each fibre. In the 
case of the tangent bundle, sections are 
called vector fields, or more evocatively, 
velocity fields. If the vector bundle is a 
trivial line bundle – that is, if each fibre 
is the set of real numbers (thought of as  
a one-dimensional vector space) – a  
section is a just a real-valued function  
defined on the base space. 
 A complex vector bundle is one with 
each fibre a complex vector space. If 
each fibre is endowed with a hermitian 
inner product, we call it a unitary (in 
slightly more modern terms hermitian) 
bundle. 
 The first major theme of Narasimhan’s 
work is that of ‘global analysis’, that is, 
calculus on manifolds – in particular, 
partial differential operators acting bet-
ween vector bundles.  
 In coordinates, this means the study of 
systems of linear partial differential 
equations. On a manifold, the topology 
(global shape) imposes restrictions on 
solutions, restrictions that are summa-
rized in terms of cohomology groups. 
(For example, a curl-free vector field on 
a simply connected domain in three-
space is the gradient of a function.) 
 In the theory of analytic (=holomor-
phic) functions of a complex variable 
z = x + iy, we are familiar with the rich 
phenomenon engendered by the Cauchy–
Riemann equations 0,z 


   where 

 

 1: .
2

i
z x y
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  

   
 

 
This is the archetypical elliptic operator. 
To transplant this from domains in the 
complex plane to a real two-dimensional 
manifold, we need to endow the mani-
fold with a ‘complex structure’ – namely 
local coordinates whose mutual depend-
ence is holomorphic. In complex func-
tion theory, such ‘one-dimensional 
complex manifolds’ arise as Riemann 

surfaces associated to multi-valued func-
tions. Freed of those origins, we are free 
to consider compact Riemann surfaces. 
 We give an informal definition, which 
illustrates the modern, post-Bourbaki  
approach to mathematics. A compact 
Riemann surface is a compact two-
dimensional manifold (a ‘surface’), to-
gether with an additional complex struc-
ture. This structure can be described in 
many ways, but a particularly suggestive 
one is to say that we single out, among 
all infinitely differentiable complex-
valued functions, a subset (in fact, a 
subalgebra) which we declare to be 
holomorphic. This set has to be rich 
enough to include local coordinates 
around each point, and the local coordi-
nates have to be mutually analytic. Rie-
mann surfaces have a number of aspects, 
two of which we list below: 
 
(1) Topologically, such a surface is 

classified as a sphere, torus (the in-
ner tube of a tyre), or a number –
 this number is the genus, tradition-
ally denoted g – of such tori glued 
together. Of these, the sphere carries 
a unique complex structure – in this 
avatar it is called the Riemann 
sphere. Starting with genus, the 
complex structure allows inequiva-
lent deformations. (More of this  
below.) 

(2) A compact Riemann surface has a 
unique algebraic structure. This is 
uncovered by considering the field 
of meromorphic functions. (Mero-
morphic functions are functions ana-
lytic outside finitely many points 
where they are allowed to have 
poles, e.g. z  z–n with n any posi-
tive integer – but not essential sin-
gularities – e.g. z  exp z–1). In 
general, the field of meromorphic 
functions has transcendence degree 
one over the complex numbers, and 
quite remarkably, determines the 
complex geometry of the surface. In 
case of the Riemann sphere, this is 
the field of rational ‘functions’ (i.e. 
ratios of polynomials) in one vari-
able. As a complex object, a Rie-
mann surface has dimension one, so 
Riemann surface = complex curve. 

 
 Before we go further, an interlude to 
introduce the vast subject of algebraic 
geometry. The theory of one-dimensional 
complex manifolds (Riemann surfaces) 
can be generalized to arbitrary dimen-

sions, and this leads to the notion of a 
complex manifold. In higher dimensions, 
not every complex manifold is algebraic, 
and those which do admit an algebraic 
structure – complex algebraic varieties – 
occupy a central place in modern 
mathematics. An affine complex alge-
braic variety is the set of solutions of a 
collection of algebraic equations in 
finitely many (complex) variables; glue-
ing such varieties yields more general 
varieties, in particular projective varie-
ties, which are closed subvarieties of a 
complex projective space. If the equa-
tions have integer coefficients, they can 
be read modulo any prime number p, and 
we can also count the number of solu-
tions in finite extensions of the field 
p = /p. (These numbers will be finite 
if the corresponding complex variety is 
projective.) The famous Weil conjec-
tures, proved by P. Deligne, relate the 
topology of a complex projective variety 
to the numbers of such solutions, pro-
vided that both the complex variety and 
the variety defined over p are nonsingu-
lar. (In the latter case, ‘nonsingular’ must 
be suitably defined.) 
 Returning to Riemann surfaces, we 
have the following remarkable picture. 
Fix a genus g, and consider the set of 
complex (=algebraic) structures on an 
(oriented) surface of genus g. This set of 
complex structures has itself a natural 
structure of a complex algebraic variety 
g of dimension 3g – 3. This variety is 
a basic example of a moduli space. A 
point of g determines an algebraic 
structure on the surface, and as we move 
away from this point, the algebraic struc-
ture changes or ‘deforms’. Historically, 
the local parameters were called moduli; 
hence the term ‘moduli space’. 
 It is worth elaborating on the notion of 
deformation. If we consider a fixed topo-
logical space, it may or may not admit a 
structure of differentiable manifold. Such 
a structure, if it exists, need not be 
unique; nonetheless, any differentiable 
structure ‘close enough’ to a given one 
will be isomorphic to it. This is no longer 
the case for complex structures, and in 
fact, the space of complex structures on a 
given differentiable manifold is explored 
by fixing one complex structure and 
probing nearby ones in ‘perturbation  
theory’. The machinery goes by the name 
of deformation theory. 
 Let us now consider complex vector 
bundles. On a Riemann surface, such a 
bundle is topologically classified by its 
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rank (= the dimension of each fibre) and 
degree or first Chern class (an integer 
that describes how ‘twisted’ the bundle 
is). Recall the notion of a section of a 
vector bundle – a choice of a vector in 
each fibre. A holomorphic structure on a 
complex vector bundle is a choice of a 
subset of sections which we declare to be 
holomorphic. As in the case of complex 
structures on a surface, the space of 
holomorphic sections has to be ‘big’ 
enough – multiplying a holomorphic sec-
tion by a holomorphic function should 
result in a new holomorphic section, and 
values of holomorphic sections should 
locally span the fibres of the vector bun-
dle. In general, a given complex vector 
bundle admits inequivalent holomorphic 
structures. In fact, the set of holomorphic 
structures on the trivial line bundle is al-
ready an interesting moduli space, the 
Jacobian of the Riemann surface, which 
is a complex torus of dimension g. 
 When we turn to vector bundles of 
rank bigger than one, it turns out that 
there is no way to put together the iso-
morphism classes of all holomorphic 
vector bundles into a variety. On the 
other hand, if we consider semistable 
bundles, there is indeed a nice variety 

that parametrizes (strictly speaking not 
isomorphism classes but s-equivalence 
classes of) semistable bundles. Fixing 
rank r and degree d, this is the variety 
UX(r, d) referred to in the main body of 
this article. 

Appendix 2 

Lemma 1. Let a real C one-form 
B = 1(x)dx1 + 2(x)dx2 be given in an 
open ball V in 2. Then we can find 
(possibly in a smaller ball) C complex-
valued functions ul, l = 1,…, 5 such that 
 

 2| ( ) | 1,l
l

u x   and (1) 

 

 ( )d .l l
l

u x u iB  (2) 

 

(Note that the first equation implies that 
the form on the left of the second equa-
tion is purely imaginary.) The following 
proof is simple, but tricky. 
 

Proof. At the cost of shrinking the ball 
and scaling the coordinates, we can  
assume that 

 j = j – j, j = 1, 2, 
 
with (a) both j and j strictly positive 
functions; (b) j  1, j  1, and (c)  
j j + j < 1

2 .  Define functions pj and qj 
by 2 ,j jp   2 .j jq   Set ,jix

j ju p e  
2 ,jix

j ju q e   and define the (real-
valued) positive function u5 by 
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Clearly we have 2| ( ) | 1.l lu x   Also 
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