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The Singhbhum craton in eastern India hosts a num-
ber of mafic dyke swarms popularly called ‘newer 
dolerites’. Previous attempts to obtain emplacement 
ages of these rocks were limited to a few poor-pre-
cision K–Ar whole-rock and Rb–Sr isochron ages. 
Here, two prominent dykes from the WNW–ESE 
trending swarm in the south central region of the craton 
were dated using Pb–Pb baddeleyite thermal extrac-
tion–thermal ionization mass spectrometer method. 
These dykes yielded identical baddeleyite Pb–Pb ages 
of 1766.2  1.1 Ma (SKJ-10) and 1764.5  0.9 Ma 
(SKJ-15) respectively, which are interpreted as the time 
of emplacement of the WNW–ESE trending ‘newer 
dolerite’ dyke swarm. The predominantly parallel dyke 
trend in this swarm for over 100 km along strike indi-
cates these dyke fractures were formed due to horizon-
tal compressive stresses in a region that may have been 
associated with a palaeo compressional system. 
 Coeval ~1770 Ma magmatism in the Singhbhum 
craton and in China, Australia, Brazil and Uruguay 
confirms this event was globally widely dispersed. The 
timing of this event also coincides with orogenic activ-
ity in majority of continents that may have formed 
during the assembly of supercontinent Columbia. 

Keywords: Baddeleyite ages, coeval magmatism, cra-
tons, dyke swarms. 

EARTH’s history is punctuated by numerous periods when 
large volumes of mafic magma were emplaced. Magmas 
genetically unrelated to seafloor spreading and subduc-
tion are termed large igneous provinces (LIPs) and con-
sist of continental flood basalts1,2. LIPs of Palaeozoic and 
Proterozoic age are usually deeply eroded, and occur as 
giant dyke swarms, sill provinces and layered intrusions. 
Many LIPs have been linked to regional-scale uplift, con-
tinental rifting and break-up, and climatic crises3. Their 
ability to retain high-quality U–Pb geochronological,  
palaeomagnetic and geochemical data makes them ideal 
subjects for reconstructing past continental configurations 
and therefore for addressing the concept of repeated  
supercontinent formation and disaggregation4. 
 Spectacular dyke swarms known as ‘newer dolerites’ 
occur within the Singhbhum granite complex in eastern 

India (Figure 1). Petrologically these vary from doleritic, 
leucogranophyric to ultramafic/noritic in composition. 
Doleritic dykes are however the more dominant (99%) 
type and outnumber the other two. The newer dolerites 
were emplaced in four distinct strike patterns, NNE–
SSW, N–S, NNW–SSE and WNW–ESE. Many age  
determinations have been attempted on these dykes. The  
K–Ar whole-rock ages vary considerably within and  
between swarms and range from 2144 to 950 Ma (refs 5–
7). While a distinctly older Rb–Sr whole-rock isochron 
age of 2613  177 Ma (ref. 8) was reported for a NNE–
SSW trending ultramafic dyke. Although these age  
determinations have shown that most of the newer 
dolerite swarms are Proterozoic and at least one of these 
could be late Archaean, it is not clear whether the large 
spread in the measured ages from Mesoproterozoic to 
Neoarchaean is real or due to inherent limitations of the 
dating methods when applied to Proterozoic rocks. 
 Precise U–Pb age determination of mafic magmatism 
(to ~0.1% precision) has been possible mainly by the 
analysis of baddeleyite (ZrO2) found as a common acces-
sory mineral in these rocks. Baddeleyite generally  
 

 
 
Figure 1. Simplified geology map of a part of the Singhbhum craton 
(adapted from the Geological Survey of India map34 and dyke distribu-
tion after Google Earth satellite images) showing ‘newer dolerite’ dyke 
swarms. Stars indicate site locations of samples used for Pb–Pb age  
determinations in the present study. WNW striking dykes are shown in 
black and dykes of other orientations are shown in green. 
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contains sufficiently high concentrations of uranium (500 
to several 1000 ppm)9 with concordant or nearly concor-
dant (less than 1% discordant typically) U–Pb data even 
without any of the pre-treatments typically required for 
zircon preparation, as it appears to be much less suscepti-
ble to Pb loss than zircon9–13, and importantly, it rarely 
occurs as xenocrysts in these rocks. Due to such excep-
tional qualities, this mineral is considered to be an ideal 
geochronometer for U–Pb or Pb–Pb dating of mafic and  
ultramafic rocks. The present communication presents 
207Pb/206Pb baddeleyite age determinations on two promi-
nent dykes from the WNW–ESE trending ‘newer 
dolerite’ dyke swarm (Figure 1) using the thermal extrac-
tion–thermal ionization mass spectrometer (TE–TIMS) 
approach, and also reported in Davis14 and Kumar et al.15. 
 For separating baddeleyite, samples (~200 g) were 
crushed to <125 m grain size and concentrated using a 
Wilfley table, followed by handpicking under a binocular 
microscope. Best quality (mineral inclusions, fractures 
and alteration-free) baddeleyite crystals were cleaned in 
4N HNO3 and were rinsed several times in MQ (Milli-Q) 
H2O and dried. Zone-refined rhenium filaments 
(0.030 inches wide by 0.001 inches thick) used for load-
ing the baddeleyite were welded on the posts and bent us-
ing a jig to form a transverse 0.5 m broad and 0.5 m 
deep U-shaped valley in the centre. These were outgassed 
and cleaned at alternating high (4.0 A) and low (2.0 A) 
temperature steps with the complete sequence lasting for 
90 min, and left for at least a week before loading. After 
washing with HNO3 and ultraclean water (MQ), the 
grains were loaded onto filaments for annealing at 
1250C in a vacuum chamber at ~1  10–7 mbar for 
30 min to expel disturbed Pb from altered domains. 
Grains were subsequently embedded in silica glass on the 
same Re filament by fusing the sample with silica gel and 
phosphoric acid mixture at 1200C for ~10 min in a  
vacuum chamber. Sample loading was performed under a 
stereomicroscope in a clean air station fitted with a 
HEPA filter. Analyses were performed on a TRITONPLUS 
TIMS at the CSIR–National Geophysical Research Insti-
tute, Hyderabad. The three high-mass Faraday detectors 
(H1 to H3) connected to 1011 ohm resistors were used to 
measure 206Pb, 207Pb and 208Pb, in static multi collector 
mode with virtual amplifier rotation. The 204Pb signal was 
very small and therefore was collected simultaneously by 
a secondary electron multiplier–ion counting system on 
the axial channel. Isotopic ratios were corrected for in-
strumental mass fractionation of 0.18%/atomic mass unit. 
This value is marginally higher than the average of 0.1% 
generally observed with Pb emission for dissolved silica 
gel loads16. 
 The 207Pb/206Pb ages for each block were calculated 
from the determined 207Pb/206Pb and 204Pb/206Pb ratios 
with corrections for common Pb, according to the model 
proposed by Stacey and Kramers17. Ages are determined 
from weighted means of fraction averages using accepted 

decay constants18. Details regarding data acquisition and 
data reduction are given in Kumar et al.15. 
 Five baddeleyite fractions from Phalaborwa carbonatite 
standard analysed during this work yielded a 207Pb/206Pb 
weighted mean age of 2060.1  0.7 Ma, with an MSWD 
(mean square of weighted deviates) of 0.57 (Table 1 and 
Figure 2). This age is indistinguishable (within error) 
from the reported 207Pb/206Pb age of 2059.7  0.35 Ma 
(MSWD = 7.7, n = 59) by Heaman19 and 2060.6  0.5 Ma 
by Reischmann20, obtained by the conventional U–Pb iso-
tope dilution TIMS method. 
 Pb isotopic results for five baddeleyite fractions each 
separated from SKJ-10 and SKJ-15 are given in Table 1 
and shown in Figure 3. Fraction weighted mean 207Pb/ 
206Pb ages for the two samples SKJ-10 and SKJ-15 are 
1766.2  1.1 Ma (MSWD = 1.6) and 1764.6  0.9 Ma 
(MSWD = 2.l) respectively. If the assigned errors are the 
only cause of scatter, MSWD will tend to be close to 1 
(ref. 21). In these datasets the MSWD is marginally 
higher at 1.6 and 2.1 respectively, and cannot be ac-
counted by analytical errors alone. The higher MSDW for 
TE–TIMS data is attributed to fractionation error, which 
was estimated to be 0.05% for baddeleyite analysis15. 
Adding a 0.05% (0.88 Ma) error to the data resulted in 
1766.0  1.0 Ma age (MSWD = 0.62) for SKJ-10 and 
1764.6  0.9 Ma age (MSWD = 0.64) for SKJ-15, reduc-
ing the MDSW to <1 but resulting in the same errors for 
the weighted mean ages, suggesting that fractionation  
error should be included in all TE–TIMS data. Therefore, 
the grand mean ages of 1766.0  1.0 and 1764.6  0.9 Ma 
are interpreted as the best estimate for baddeleyite crys-
tallization in these dykes and hence the emplacement age 
of the WNW–ENE trending ‘newer dolerite’ dyke swarm.  
 Reported K–Ar ages on this dyke swarm are considera-
bly lower and vary between 1241 and 1264 Ma (ref. 7). 
 
 

 
 
Figure 2. TE–TIMS weighted mean 207Pb/206Pb age of five baddeley-
ite fractions from the Phalaborwa carbonatite standard. Errors bars rep-
resent 95% confidence limits of measurements. 
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Table 1. TE–TIMS Pb isotopic data on baddeleyite fractions from the newer dolerite dykes and Phalaborwa carbonatite baddeleyite standard 

  No. of  Absolute 
Sample no. Sample weight blocks 206Pb/204Pb (m) error 207Pb/206Pb (m) 207Pb/206Pb (c) Pb–Pb age (Ma) 
 

SKJ- 10 
 SKJ 10-1  4.9  24  64053   476  0.108139  226  0.107973  040  1765.7  2.4 
 SKJ 10-2  5.1  26  22591   311  0.108593  160  0.107996  032  1766.8  1.8 
 SKJ 10-3  5.0  15  29623   293  0.108749  161  0.107996  049  1766.8  2.6 
 SKJ 10-4  5.2  37  42363   649  0.108325  094  0.107960  050  1765.2  2.6 
 SKJ 10-5  5.1  28  41146   696  0.108228  095  0.107907  052  1764.7  2.8 
Grand weighted mean after adding fractionation uncertainty of 0.055% 
Age: 1766.0  1.0 Ma (MSWD = 0.62) 
 
SKJ-15 
 SKJ 15-1  4.8  20  14807   191  0.108467  126  0.107944  031  1765.5  1.9 
 SKJ 15-2  4.7  30  15417   144  0.108835  088  0.107976  029  1765.4  2.2 
 SKJ 15-3  4.6  30  19812   282  0.108457  061  0.107881  028  1763.6  1.9 
 SKJ 15-4  4.5  30  21270   302  0.108504  047  0.107894  023  1764.4  1.7 
 SKJ 15-5  4.6  30  18451   253  0.108559  055  0.107907  039  1764.6  2.2 
Grand weighted mean after adding fractionation uncertainty of 0.055% 
Age: 1764.6  0.9 Ma (MSWD = 0.64) 
 
Phalaborwa carbonatite (BD-1) 
 BD 1-8  12.4  17  26661  1654  0.127734  032  0.127198  041  2059.6  1.5 
 BD 1-9  11.6  14  12855   543  0.128296  068  0.127195  044  2059.6  1.5 
 BD 1-10  12.0  16  10315   829  0.128566  091  0.127230  028  2060.0  1.5 
 BD 1-11   5.8  25  23056   392  0.127862  043  0.127252  042  2060.4  1.5 
 BD 1-12   5.8  22  26882   489  0.127799  043  0.127292  032  2060.9  1.5 
Grand weighted mean after adding fractionation uncertainty of 0.055% 
Age: 2060.1  0.7 Ma (MSWD = 0.57) 

Sample weight is in micrograms. 206Pb/204Pb (m) and 207Pb/206Pb (m) are measured values (fraction means with standard error) and 207Pb/206Pb (c) is 
the corrected value (weighted means and errors). Uncertainties are 2m and refer to the least significant digits.  
 
 

 
 

Figure 3. TE–TIMS weighted mean 207Pb/206Pb age of five baddeleyite fractions from Singhbhum ‘newer dolerite’ dyke samples,  
(a) SJK-10 and (b) SJK-15. Errors bars represent 95% confidence limits of measurements. 

 
 
 Close observation at dyke intersections indicates that 
the dated WNW–ENE trending ‘newer dolerite’ dyke 
swarm distinctly cuts dykes of other orientations at several 
locations, suggesting this could be one of the youngest 
swarms in the region. If the older Rb–Sr whole-rock 
isochron age of 2613  177 Ma (ref. 8) reported for a 

NNE–SSW trending ultramafic dyke is accepted as its 
emplacement age, within its large error limits (subject to 
refinement by U–Pb or Pb–Pb baddeleyite/zircon 
method), these two swarms which constitute a large pro-
portion of the ‘newer dolerite’ dykes in the Singhbhum 
craton were emplaced during the Palaeoproterozoic and 
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Neoarchaean respectively. K–Ar whole-rock ages on the 
other hand, are considerably younger and vary from 2144 
to 950 Ma (refs 5–7). If the Pb–Pb baddeleyite and Rb–Sr 
(within their large errors) ages are accepted as their actual 
emplacement ages (considering that the present authors 
unpublished Pb–Pb baddeleyite age for the older dyke 
swarm is also similar within errors to the Rb–Sr age), the 
‘newer dolerites’ were emplaced ~700 Ma earlier. This 
could have important geological implications, as many 
correlations were based on newer dolerite ages. This may 
even necessitate a revision in the Proterozoic stratigraphy 
of the Singhbhum craton. Additional baddeleyite geo-
chronology on other dyke swarms from the region has 
been initiated to substantiate this inference. 
 Though the 1765 Ma age reported here is the precise 
Pb–Pb baddeleyite age for a Singhbhum dyke swarm, 
several dyke swarms have been precisely dated using the 
U–Pb baddeleyite/zircon method from the Dharwar,  
Bastar and Bandelkhand cratons. A first-order compari-
son of dyke events between these cratons shows the old-
est known and perhaps the most dominant swarm in the 
Dharwar craton is the 2367 Ma Dharwar giant dyke 
swarm, with an aerial extent of nearly the entire eastern 
Dharwar craton4,22. Other dated dyke swarms from the 
eastern Dharwar craton include a N–S-oriented swarm at 
2220.5  4.9 Ma, a NW–SE striking swarm at 2209.3  
3.8 Ma and a radial WNW–ESE to NW–SE swarm at 
2180.8  0.9 to 2176.5  3.7 Ma (refs 23–25). In addi-
tion, a large igneous province emplaced between 1891 
and 1883 Ma consisting of mafic dykes in the Bastar cra-
ton and mafic–ultramafic sills in the Cuddapah basin was 
recognized by French et al.26. Two dyke swarms em-
placed at 1979  8 and 1113  7 Ma have been reported 
from the Bandelkhand craton27. A younger 1466.4  
2.6 Ma dyke swarm has been reported from the Lakhana 
region in the Bastar craton28. Except for the 1885 event in 
the Bastar and Dharwar cratons, there are no matching 
events between them. This suggests that the number of 
precisely dated events from either of these Indian cratons 
is inadequate for a meaningful comparison between them 
or to speculate on their ancestry within other proto  
cratons/continents. 
 Though dyke swarms of 1765 Ma age have not been 
reported from other Indian cratons, coeval mafic magma-
tism is known from several other regions, including 
China, North China craton (1769  2.5 Ma, U–Pb, zir-
con)29, Kimberley basin in Australia (1790  4 Ma, U–Pb, 
zircon)30, Avanavero, Roraima, Brazil, (1794  4 Ma,  
U–Pb, Baddeleyite)31, Uruguay (Rio de Plata Craton, 
1790  5 Ma, U–Pb, Baddeleyite)32. The timing of this 
event coincides with orogenic activity in several conti-
nents which could have formed during the assembly of a 
supercontinent Columbia33. The WNW–ESE dyke swarm 
studied here could also be an expression of the same oro-
genic activity. 
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