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Establishing precise and accurate analytical methods 
for multicomponent analysis using time- and cost-
effective ways are highly advantageous. Here, syn-
chronous fluorescence spectroscopic method is  
coupled with chemometric tools in order to achieve 
simultaneous quantitative analysis of a three-component 
system consisting of metoprolol, propranolol and 
amiloride. Chemometric methods such as principal 
component regression and partial least squares re-
gression were applied to the fluorescence data. Root 
mean square error values, correlation coefficient and 
limit of detection were used to judge the potential of 
the model for prediction. The proposed method 
worked well for simultaneous analysis of the three-
drug system in the presence of strong serum albumin 
signals. 
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NOWADAYS, drugs have become an essential factor in 

human life and researchers are involved in different studies 

related to drug resistance, determination of drug doses, 

drug designing, drug impurity profiling, pharmacology 

and pharmacokinetics, etc.
1–7

. Assessment of pharmaco-

kinetic properties of drugs mainly depends on drugs  

concentration over time. Evaluation of adherence, absorp-

tivity and bioavailability is also a cause or motive for 

drug analysis. Thus, studies on drug–DNA interaction, 

drug–micelle interaction, drug–serum albumin binding 

mechanism, simultaneous drug determinations and drug–

metal ion interactions are extremely significant
8–12

. Drug 

combination therapies are frequently used nowadays  

because they help cure diseases easily and reduce drug 

resistance
13,14

. Hypertension is a major health concern  

related to blood pressure and cardiovascular illness. 

Pharmacotherapy studies of hypertension showed that 

combined treatment is more useful than single-drug ther-

apy, as the therapeutic effect of the applied drug is  

enhanced by the combined treatment
15

. Complex agents 

that are used to treat hypertension include diuretics, -

blockers, calcium channel blockers, ACE inhibitors,  

angiotensin receptor antagonists, etc.
16

. Amiloride is a 

weak diuretic which increases the excretion of sodium by 

blocking the sodium channel in the distal renal tubule and 

reduces loss of potassium ions. Propranolol and metoprolol 

are non-selective -blockers which are used for angina 

pectoris, cardiac arrest, etc. Due to their additive effect, 

diuretics and -blockers are given in combination to con-

trol arterial pressure
16–18

. 

 Various techniques such as UV–Vis spectrophotome-

try, high pressure liquid chromatography (HPLC), gas 

chromatography (GC), mass spectrometry (MS), GC–MS, 

differential pulse polarography, cyclic voltammetry (CV), 

capillary electrophoresis, nuclear magnetic resonance 

(NMR), etc. have been used for drug analysis
19–27

. Fluo-

rescence spectroscopic method is also widely used nowa-

days for drug analysis as most of the drugs are fluorescent 

in nature. The advantages such as high sensitivity (lower 

detection limits), selectivity and low cost make the fluo-

rescent technique a better option for routine drug analysis 

compared to other techniques. There is a linear response 

between concentration of analyte species and fluores-

cence intensity, which makes it a more advantageous 

tool, as the chemometric methods can be employed  

directly for developing the calibration model. 

 In the present study, multivariate chemometric methods 

are applied for the quantitative simultaneous determination 

of ternary mixtures of drugs using spectrofluorimetry. 

Spectral profiles of multicomponent system are highly 

complex and the data output is very large. A quantitative 

analysis of each species is possible only when multivari-

ate chemometric methods are applied on their spectral da-

ta. Thus, an attempt is made to develop a method for 

ternary drug analysis which will have lower detection 

limit and high precision. The developed model will be 

used for the prediction of drugs in pharmaceutical prepa-

rations and serum samples. 

 Amiloride hydrochloride (AMI), metoprolol tartrate 

(MET) and propranolol hydrochloride (PRO) in pure 

form were purchased from Sigma Aldrich. Tablets con-

taining MET (Metolar 25), PRO (Ciplar-10) and AMI 

(Biduret) were purchased from local pharmacies. All  

solvents used throughout this study were of spectroscopic 

reagent grade. Triply distilled water (TDW) was used for 

the study. 

 Fluorescence spectra were recorded on Jasco 

spectrofluorimeter (150 W Xenon lamp as source). Spec-

tral scanning was made in the wavelength range 280–

450 nm. Excitation and emission monochromator slit 

widths were adjusted at 5 nm. Spectra were recorded at 

1 nm interval with scan speed of 1000 nm/min. All multi-

variate calibration methods were performed on PLS 

toolbox 7.5 software and SOLO+MIA-731. 

 For sample preparation, stock solutions of amiloride, 

metoprolol and propranolol of 10 ppm (10 g/ml) were 

prepared separately by dissolving accurately weighed 

0.001 g of each drug in methanol and diluting to volume 

with triply distilled water in 100 ml volumetric flask. 
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Appropriate dilutions were made from stock solution, 

keeping working concentration range 0–240, 0–180 and 

0–60 ng/ml of MET, AMI and PRO respectively. Thirty 

different ternary combinations were prepared out of 

which 20 samples were used as calibration dataset and 10 

samples were used for validation purposes. The concen-

trations of MET, AMI and PRO employed in the calibra-

tion dataset and validation dataset are given in Tables S1 

and S2 respectively (see supplementary material online). 

 For the analysis of drugs in pharmaceutical samples, 

stock solutions of amiloride, metoprolol and propranolol 

of 10 ppm were prepared separately as follows. Weight of 

the drug equivalent to 0.001 g of active ingredient was 

weighed and dissolved in methanol and diluted to volume 

with TDW in each 100 ml volumetric flask. Appropriate 

volume of stock solution was pipetted and added to 10 ml 

volumetric flask followed by dilution up to the mark to 

obtain a final concentration range 0–100, 20–50 and  

0–140 ng/ml for MET, PRO and AMI respectively. 

 The evaluation of robustness of the method was carried 

out by performing drug analysis in the presence of serum. 

Stock solution of bovine serum albumin of 6600 ng/ml 

was prepared. The working concentration of serum was 

maintained constant (660 ng/ml). Drug mixture contain-

ing MET concentration from 60 to 240 ng/ml, PRO con-

centration from 20 to 60 ng/ml and AMI concentrations 

from 40 to 180 ng/ml was prepared in this serum concen-

tration. 

 Multivariate calibration method comprises of two 

steps. In the first step, which is termed as calibration, an 

empirical model is built. The relationship between the da-

ta generated from a set of reference samples and the  

respective concentrations of their component(s) is gener-

ated in the form of a calibration model. This is followed 

by a second step called validation and prediction. Two 

commonly employed multivariate methods are principal 

component regression (PCR) and partial least squares  

regression (PLSR). 

 PCR and PLSR are factor-based methods, which per-

form data decomposition into spectral loadings and 

scores prior to model building using new variables
28,29

. In 

PCR, the data decomposition is done using only spectral 

information, whereas PLSR employs spectral and concen-

tration data simultaneously. PCR is a two-step multivari-

ate calibration method. In the first step, a principal 

component analysis (PCA) is performed which reduces 

the large number of variables to a much lesser number of 

principal components (PCs) that capture majority of vari-

ance in the data. Thus the measured variables (e.g. fluo-

rescence intensity at different wavelengths) are converted 

into new ones (scores on latent variables). The second 

step of PCR involves a multiple linear regression (MLR) 

which is performed on the scores obtained in the PCA 

step
30

. 

 PLSR is another quantitative spectral decomposition 

technique that generalizes and combines features from 

PCA and MLR and performs the data analysis in one 

step. In brief, PLSR decomposes both the spectral profile 

and concentration matrices into a product of two smaller 

matrices. In this process, it utilizes the variables included 

in the concentration matrix for spectral data decomposi-

tion. It involves a data compression step where the meas-

ured data are compressed to a smaller number of variables 

called ‘scores’ in a new coordinate system. The new co-

ordinate axes are called latent variables (LVs) or PCs, 

and are linear combinations of the original variables
30,31

. 

 Figure S1
 
a and b (see supplementary material online) 

shows the individual excitation and emission spectra of 

each component used for the study, i.e. metoprolol 

(MET), propranolol (PRO) and amiloride (AMI) in meth-

anol solvent. ex of the selected drugs, MET, PRO and 

AMI was found to be 275, 290 and 366 nm respectively. 

em of MET and AMI was found to be at 302 and 417 nm 

respectively. In the case of PRO, a structured emission 

was observed with emission maximum at 327 and 

337 nm. AMI excitation spectrum overlaps appreciably 

with MET and PRO emission spectra. PRO excitation 

spectrum and MET emission spectrum merge at many 

points. On careful analysis of these spectra it is evident 

that partial spectral overlap is present, which may result 

in fluorescence resonance energy transfer and quenching. 

Such a spectrum of drug combinations will not provide 

much information with respect to their quantitative analy-

sis. 

 This drawback of conventional fluorescence can be 

overcome by extending the dimensionality of fluores-

cence, i.e. by introducing an additional parameter . 

This technique, known as synchronous fluorescence spec-

troscopy (SFS) is widely used for multicomponent analy-

sis. Wavelength range 280–450 nm was maintained in the 

synchronous fluorescence scanning because all components 

 

 

 
 

Figure 1. Synchronous fluorescence spectra of ternary mixture of 
drugs containing metoprolol, propranolol and amiloride in 3D view. 

http://www.currentscience.ac.in/Volumes/108/07/1348-suppl.pdf
http://www.currentscience.ac.in/Volumes/108/07/1348-suppl.pdf
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Table 1. Comparison of different preprocessing methods adopted for partial least square regression 

(PLSR) and principal component regression (PCR) methods for the calibration and validation of  

  metoprolol (MET), propranolol (PRO) and amiloride (AMI) synthetic ternary mixtures 

 NONE AUTO MNCN 
 

Component Statistical parameters PLSR PCR PLSR PCR PLSR PCR 
 

MET R2 0.998 0.999 0.997 0.998 0.998 0.999 

  No. of factors 6 6 6 6 6 6 

  RMSEC 2.224 2.318 3.072 2.643 2.160 2.210 

  RMSECV 3.130 3.119 6.477 5.480 3.504 3.391 

  RMSEP 3.770 3.506 4.869 4.548 2.606 2.545 

 

PRO R2 0.991 0.989 0.993 0.991 0.992 0.983 

 No. of factors 6 6 6 6 6 6 

 RMSEC 1.754 1.973 0.632 1.684 1.503 1.408 

 RMSECV 3.168 3.156 2.642 2.401 2.337 2.296 

 RMSEP 1.856 1.724 2.929 1.835 1.655 1.576 

 

AMI R2 0.992 0.992 0.978 0.981 0.992 0.992 

 No. of factors 3 3 3 3 3 3 

 RMSEC 3.543 3.543 6.714 6.215 3.515 3.516 

 RMSECV 4.869 4.869 10.838 9.763 5.137 5.137 

 RMSEP 5.936 5.936 8.814 8.339 4.045 4.678 

 

 

show fluorescence signals in this range. Also,  of 

10 nm was selected as it gave the fine-resolved spectra 

with a good spectral resolution. As the  value increases, 

the spectra get broadened and overlap of bands occurs. 

 Well-resolved spectra of drugs could be observed when 

samples were analysed using synchronous fluorescence 

spectroscopy (Figure 1). The spectral peaks at around 

290, 330 and 390 nm correspond to MET, PRO and AMI 

respectively. Even though a separation of spectral  

features was achieved, spectral contribution of each com-

ponent cannot provide quantification. To achieve this, 

multivariate computational methods such as PLSR and 

PCR were applied on the SFS data to extract quantitative 

information. 

 PLSR and PCR are the most successful multivariate 

calibration methods that can be applied to the whole 

spectrum; however, precision will be reduced if noisy da-

ta with scarcely informative wavelengths get included. 

Precision and thus the robustness of the model can be  

improved by discarding data at particularly noisy wave-

lengths. The wavelength range used in this experiment 

was from 280 to 450 nm (171 wavelengths). Using the 

spectral data of 20 samples calibration model was deve-

loped and validated. This model was applied to a predic-

tion set which comprises of valid samples whose 

concentrations fits into the calibration range. Best predic-

tions depend upon standard composition of calibration set 

and hence selection of concentration range is important. 

 Data organization is the first task for the application of 

multivariate methods on spectral information. X block 

contains spectral data obtained by SFS at different wave-

length and Y block contains concentration values of sam-

ple components. Arrangement of X block data was done 

in the form of a matrix consisting of rows (samples) and 

columns (fluorescence intensity values at different wave-

lengths). Data in the matrix form (number of samples  

fluorescence intensities at 171 wavelengths, i.e. 20  171) 

were loaded into PLS toolbox for further processing. Y 

block data matrix size was 20  3, i.e. number of sam-

ples  number of components. Spectra may also contain 

nonlinearities introduced by light scatter and noise. Pre-

processing methods reduce the variability or undesired 

scatter in the data. Different pre-processing methods like 

autoscale, mean centring and smoothening were used on 

the data. Data were also analysed without any pre-

processing method (none). A comparison was made 

among different preprocessing techniques employed, 

which is presented in Table 1. 

 The developed model, its validation and predictions 

were evaluated using parameters such as correlation co-

efficient and root mean square error (RMSE). RMSE is  

defined as follows 
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where n is the number of samples used, and ypred and yobs 

are the predicted and reference concentration values  

respectively, of sample i in the calibration set (or valida-

tion set or prediction set). Root mean square error of  

calibration (RMSEC) is obtained during method develop-

ment (ypred: concentrations predicted by model during 

calibraion). Root mean square error of cross validation 

(RMSECV) is calculated when the model is cross-validated 
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Figure 2. Measured versus predicted concentrations of MET, PRO and AMI in their synthetic mixtures (calibra-
tion dataset) based on cross validation by PLSR and PCR models (, Calibration dataset; , Prediction dataset). 

 

 

using ‘leave one out’ method (ypred: concentrations pre-

dicted by model using cross validation). In this method, 

regression model is calculated using n – 1 samples leav-

ing out one sample at a time and predicting the concentra-

tion of the left-out sample. The prediction error of this 

process is calculated from the difference between the 

predicted and true values. This procedure is then  

repeated leaving out every sample in the calibration set 

once and the summed prediction error is calculated. 

When the model is applied to a new set of data it is  

possible to calculate a root mean square error of predic-

tion (RMSEP), where ypred is the concentrations predicted 

by the model for unknown samples
32

. 

 RMSE and RMSECV values are comparatively lower 

if mean centring is adopted as a pre-processing method. 

Since the best and most appropriate results were obtained 

with mean-centring, it was applied to the data and further 

analysis was performed. 

 PLSR and PCR are factor-based techniques. Therefore, 

determination of the number of factors to be used in the 

calibration is a crucial step. Selection of the number of 

factors should be such that it should contain maximum 

analytical information. From the predicted residual error 

sum-of squares plot (PRESS plot), the number of factors 

can be selected. To select the number of factors, cross 

validation method was employed. 
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Table 2. Determination of MET–PRO–AMI in synthetic mixtures to check the validation of the developed  

 model by PLSR method 

Added concentration (ng/ml) Found concentration (ng/ml) Recovery (%) 
 

MET PRO AMI MET PRO AMI MET PRO AMI 
 

 40 – 150 38.83 – 157.31  97.08 – 104.87 

 80 – 150 81.41 – 144.21 101.76 – 96.14 

– 20 – – 21.04 – – 105.2 – 

120 70  90 120.24 69.57 85.17 100.2 99.39 94.63 

160 – – 161.02 – – 100.64 – – 

160 20 120 161.02 20.67 120.81 100.64 103.35 100.67 

200 60  30 195.67 62.66 28.42  97.84 104.43 94.73 

– 30 – – 28.02 – – 93.4 – 

– 60 180 – 63.6 176.35 – 106 97.97 

240 30  90 233.39 31.31 96.07 97.25 104.37 106.74 

Mean recovery (%)     99.34 102.31 99.39 

RMSEP      2.606 1.655 4.045 

 

 
Table 3. Determination of MET–PRO–AMI in pharmaceutical sample mixtures to check the validation  

 of the developed model by PLSR method 

Added concentration (ng/ml) Found concentration (ng/ml) Recovery (%) 
 

MET PRO AMI MET PRO AMI MET PRO AMI 
 

  0 20 140 – 19.37 137.92 – 96.86 98.51 

  0 40  60 – 42.39 63.79 – 105.98 106.33 

 90 30  0 85.89 28.64 – 95.43 95.47 – 

 60 50  0 61.21 52.64 – 102.02 105.28 – 

 70 10 110 70.83 9.71 112.13 101.19 97.07 101.93 

100 30 140 103.81 32.08 139.75 103.70 106.95 99.82 

 20 20  30 19.75 20.94 29.86  98.74 104.71 99.54 

Mean recovery (%)     100.22 101.76 101.23 

RMSEP      2.167 1.702 2.30 

 

 

 The PRESS plot, where RMSECV values are plotted 

against the number of factors is shown in Figure S2  

(see supplementary material online). The number of com-

ponents which gives a minimum PRESS value is selected 

as the optimum number of components for model devel-

opment. The optimum number of components required 

for the analysis of MET and PRO was found to be six by 

both PLSR and PCR methods. In case of AMI, optimum  

number of components was 3. The PRESS plot shows 

that the RMSECV value first decreases and then starts  

increasing when number of factors is 3 (Figure S2). 

 Figure 2 shows the calibration plot obtained using 

PLSR and PCR methods. Using the optimum number of 

factors, models were developed and the reference values 

of concentration were plotted against the concentration 

values predicted by the PCR and PLSR models. Both 

models predict the concentration well with linear fit and 

excellent correlation coefficients (0.983–0.999). 

 Cross validation was performed and was found to be 

good as evident from RMSECV values (Figure 2), which 

indicates the robustness of the model. RMSEC values  

obtained were 3.4, 2.3 and 5.1 ng/ml for MET, PRO and 

AMI respectively. 

 Validation of the developed model was carried out  

using samples with known concentrations and the results 

obtained are presented in Tables 2 and S3 (see supple-

mentary material online). From these data it is clear that 

the predicted values are in good agreement with the ref-

erence values, which is clear from low RMSEP values as 

well. RMSEP values obtained were 2.6, 1.6 and 4.0 ng/ml 

for MET, PRO and AMI respectively. 

 Recovery percentage was calculated for each of the drug 

components. The recovery range for MET was found to 

be 97–102% and 95–101% for PLSR and PCR methods 

respectively. In the case of PRO, the recovery range was 

93–105% and 94–107% for PLSR and PCR methods  

respectively. In the case of AMI, the recovery range was 

95–107% and 95–108% for PLSR and PCR methods  

respectively. 

 Limit of detection (LOD) was calculated and was 

found to be in the range 7–12 ng/ml (PLSR method: 

7.59 ng/ml for MET, 5.27 ng/ml for PRO and 

13.87 ng/ml for AMI; PCR method: 7.49 ng/ml for MET, 

5.21 ng/ml for PRO and 13.87 ng/ml for AMI). 

 To check the applicability and robustness of the  

established models, these were used to predict drug 

http://www.currentscience.ac.in/Volumes/108/07/1348-suppl.pdf
http://www.currentscience.ac.in/Volumes/108/07/1348-suppl.pdf
http://www.currentscience.ac.in/Volumes/108/07/1348-suppl.pdf
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Table 4. Added and found concentrations of MET, AMI and PRO in serum with their recovery by  

 PLSR method 

Added concentration (ng/ml) Found concentration (ng/ml) Recovery (%) 
 

MET PRO AMI MET PRO AMI MET PRO AMI 
 

 60 30  70 57.05 32.05 66.89 95.09 106.83 95.56 

100 50 120 102.62 50.92 127.37 102.62 101.85 106.14 

100 40 160 97.44 42.29 164.91 97.44 105.73 103.07 

130 60  90 128.86 62.13 87.18 99.12 103.55 96.87 

130 60 100 129.64 57.11 105.49 99.72 95.18 105.49 

190 50  40 190.49 48.18 38.39 100.26 96.36 95.97 

230 20  80 230.06 20.95 76.83 100.03 104.77 96.04 

240 50 180 236.99 50.24 174.82 98.75 100.49 97.12 

Mean recovery (%)     98.88 101.85 99.53 

RMSEP      2.024 1.854 4.551 

 

 

concentration in pharmaceutical formulations and in serum 

samples. Recovery studies were also carried out to pro-

vide further support for the validity of the proposed 

methods. 

 For determination of drugs in pharmaceutical formula-

tions, AMI, PRO and MET were purchased and dissolu-

tion was performed. From stock solutions suitable 

dilutions were made and various drug combinations were 

prepared and analysed. The results of the analysis are 

given in Tables 3 and S4 (see supplementary material 

online). Recovery range was found to be from 95% to 

102% for MET, 95% to 107% for PRO and 98% to 106% 

for AMI by PLSR method. By PCR method, recovery 

range was found to be 96% to 106% for MET, 99% to 

109% for PRO and 98% to 106% for AMI. 

 Let us now consider the determination of drugs in the 

presence of serum. Added and found concentrations of 

MET, PRO and AMI in serum with their recovery per-

centage are presented in Tables 4 and S5 (see supplemen-

tary material online). 

 Lower RMSEP values obtained for drugs in biological 

fluid indicate the good predictive abilities of the model in 

the presence of matrix effects (background serum albu-

min fluorescence signal) as well. The percentage recover-

ies were found to be 95–103% for MET, 95–107% for 

PRO and 95–106% for AMI by PLSR method. By PCR 

method, the percentage recoveries were 97–102 for MET, 

95–106 for PRO and 95–106 for AMI. 

 In this study, an attempt was made to develop a reliable 

calibration model for the simultaneous analysis of a ter-

nary mixture containing antihypertensive drugs, MET, 

PRO and AMI. Since the fluorescence spectral profiles of 

these three drugs are partially overlapping, this cannot be 

employed for quantitative analysis. Hence we have  

employed synchronous fluorescence spectroscopy which 

has a potential to analyse multifluorophoric samples. 

Since the fluorescence technique is sensitive (lower detec-

tion limits), the concentration range of analytes was 

maintained at ng/ml. PLSR and PCR calibration models 

were developed using the fluorescence spectral data and 

concentration data. The LOD obtained was from 7 to 

12 ppb, which is found to be very low. Low RMSECV 

and RMSEP values obtained indicate the prediction abi-

lity of the calibration model, showing its approval for the 

application of the method to pharmaceutical formulations 

and serum. The method is simple, rapid, highly sensitive 

and easy to apply. 
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A stone column develops its vertical load carrying capa-
city by the lateral pressure provided by the surround-
ing soil. In very soft clay (Cu  15 kPa), the stone 
column may not derive its load carrying capacity. 
Sometimes the formation of stone column is doubtful. 
In such cases, the stone column may be wrapped with 
geosynthetic peripherally (circumferentially). Normal-
ly, reinforced stone columns are used for widely spread 
areas like air tank foundation and embankment in 
which they confined by surrounding the columns. The 
performance of a small group of reinforced stone col-
umns is complex. This communication focuses on the 
numerical modelling of a small group of laboratory-
modelled reinforced stone columns. The study is car-
ried out considering parameters like area  
replacement ratio (ARR), stiffness of reinforcement 
material and reinforcement length. The performance 
of reinforced stone column group is discussed in terms 
of bearing ratio, (q/Cu)-settlement ratio, stress concen-
tration factor and lateral deformation. The results of 
numerical analyses indicate that ARR and stiffness of 
geosynthetic are the governing parameters for en-
hancing the performance of reinforced stone column. 
The performance of partial reinforced stone column is 
close to that of a fully reinforced stone column. 




