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Advance and accurate forecasts of air pollutant con-
centrations have many applications at different scales, 
from traffic planning to health advisories. However, 
such models need to incorporate local factors and 
must be validated against local observations for appli-
cability. It has been shown earlier that a dynamical 
model successfully simulates, in forecast mode, the  
observed (CPCB, India) daily concentrations of SPM, 
RSPM, SO2 and NO2 over Delhi. The present work 
shows that the model skill is also significant in  
predicting CO. Together with our earlier results, the 
present work to the robustness and enhanced scope of 
dynamical forecast of air pollution. 
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ACCURATE simulation of pollutant concentrations over an 
air basin is important for many applications like estima-
tion of emission loads, overall health risk assessment and 
traffic planning1. Air pollution model with sufficient skill 
can also be used to assess how pollutant levels would 
change in response to changes in emission rate2. World-
wide there have been efforts to develop and validate such 
air pollution models at different scales. As the pollutant 
concentrations over an air basin like a mega city strongly 
depend on the local emission processes, an air pollution 
model needs to incorporate the relevant local processes in 
its formulation. In urban areas vehicle, industries, wind-
blown dust and domestic appliances are recognized as 
major sources of air pollution. However, relative contri-
butions of these sources vary from one location to  
another. 
 Delhi, as a growing mega city, has seen manyfold  
increase in its industrial, vehicular as well as domestic 
emissions3. The growing emission has serious environ-
mental and societal implications related to ecological un-
balance and environmental degradation. In recent years, 
transportation systems are growing at an unprecedented 
rate. Mobile source emissions are the maximum contribu-
tors of carbon monoxide (CO) in Delhi4,5. Literature 
analysis reveals that CO has emerged as the main pollut-
ant in urban centres, amounting approximately to 90% 
contribution through the transport sector alone6. Thus, 
there is an urgent need to develop a dynamical model  
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Table 1. Data on total number of vehicles and emission rates 

 Type of vehicle 
 

Year Two wheeler Diesel driven car Petrol driven car Heavy vehicles 
 

2009 3,797,943 124,020 1,859,370 230,398 
2010 4,055,229 131,722 2,013,680 251,252 
2011 4,342,403 146,139 2,173,323 270,841 
Emission rate (ER; g/km)  0.72 0.06 0.84 4.97 

Source: Refs 19 and 20. 
 
 
capable of simulating and forecasting CO concentrations 
at different scales. 
 It has been shown that a dynamical model incorporat-
ing details like idling time and number of vehicles as well 
contributions from natural sources, can successfully 
simulate daily suspended particulate matter (SPM) con-
centration over Delhi7. This model was then successfully 
extended to forecasting daily concentrations of respirable 
particulate matter (RSPM), sulphur dioxide (SO2) and  
nitrogen dioxide (NO2) over Delhi8. Further, the model 
was also validated over smaller locations like ITO (a  
major traffic intersection in Delhi) and other sites like 
Pune and Mumbai9 and was shown to have useful skill. 
Subsequently, it was shown that the model could be used 
in forecast mode, driven by the meteorological fields 
forecasted by an atmospheric general circulation model 
(GCM) for skillful forecasts of pollutant concentration 
over different locations10. However, these simulations 
and validations were primarily for the four pollutants: 
SPM, RSPM, SO2 and NO2; an important question is the 
ability of the model to simulate concentration of CO, a 
pollutant of significant environmental and societal impor-
tance. 
 Exposure to CO is associated with serious health ef-
fects. In metropolitan areas where population and traffic 
density are relatively high, motor vehicles and other 
combustion sources can emit sufficient CO to cause 
health effects in the general population and in high-risk 
group11–15. The most important health effect associated 
with exposure to CO is that it inhibits the oxygen-
carrying capacity of the blood to vital organs such as 
heart and brain. Inhaled CO combines with the oxygen-
carrying haemoglobin of the blood and forms carboxy-
haemoglobin (COHb), which can reduce the ability of 
blood to transport oxygen11,15,16. CO is easily absorbed 
through the lungs17, which can lead to neurological dam-
age and even death18. 
 The objective of the present study is to explore the skill 
of the model applied earlier over Delhi, in simulating 
daily values of CO over Delhi air basin. To assess the ap-
plicability of the model to simulate dynamics of CO, we  
employed the same formalism as in our earlier studies7,8,  
using forecasts from an atmospheric mesoscale model to 
drive the air pollution model. The model has detail for-
mulation of processes related to emission of pollutants 

like the number of vehicles, type of vehicle, emission rate 
by each type of vehicle, average vehicle speed and idling 
time (Table 1)19,20. 
 The formulations of the various terms in eq. (1) have 
been described in our earlier works7,8. We define the con-
tribution of vehicular exhaust (SV) to a species as 
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where NT is the total number of types of vehicles, Nv the 
total number of vehicles of type nt, ER(nt) the average 
emission rate from a vehicle of type nt and TE(nt) is the 
effective emission in a day. 
 In eq. (1), r(t) is a positive random number between 0.8 
and 1 that represents (random) fluctuations in the traffic 
volume with time (day). 
 The effective duration of emission in a day is modelled 
as 
 
 TE(nt) = (d(nt)/v0) + TI(nt), (2) 
 
where TI(nt) is the average idling time, d(nt) the average 
distance travelled by vehicles of type nt (km) and v0 is the 
average speed of the vehicle. 
 Both TI and v0 are assumed to depend on the total vol-
ume of traffic (total number of vehicles): 
 
 TI(nt) = TI

  (1 + a(nt)), TI  0, (3) 
 
 0 = u

  (1 – b  NT
  Nv), 0  0, (4) 

 
where a, b and TI are constants which are determined 
through calibration. Equations (3) and (4) assume that  
although in a metropolitan area like Delhi all vehicles 
would move with the same average speed (regulated by 
traffic control), the idling time changes based on the type 
of vehicle, with the smallest (largest) idling time for the 
lightest (heaviest) vehicle; the increase in the number of 
vehicles reduces the average speed below a free traffic 
speed u. 
 The mathematical representation of dynamics of a spe-
cies as well as the sources and sinks are as described in 
our earlier work7,8. The sources of species concentrations 
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Figure 1. Daily values of CO over Delhi air basin from observation (CPCB, India) compared with simulation for the years 2009–2011. The left 
and the right panels indicate respectively, the simulations driven by NCEP and MM5-derived meteorological fields. The benchmark simulations 
with NCEP are based on area-averaged daily fields from NCEP Reanalysis (thick line) for the day of the forecast; the mesoscale forecasts (dotted 
line) are with lead of 24 h. The first number within brackets represents the correlation coefficient between observation and prediction; the second 
number represents the significance levels for corresponding correlation coefficients. 
 
are vehicular exhaust (SV) wind-blown dust (SW) and  
domestic appliances (SD). However, in the present study, 
we have neglected wind-blown dust as it is not known to 
contribute to the concentration of CO. The primary sinks 
of species are precipitation (SP), removal due to advection 
(SA) and dry deposition. The simulations are carried out 
for the period 2009–2011 for which CPCB observations 
on daily CO were available. 
 The daily atmospheric fields were taken from daily  
reanalysis of NCEP21 and a mesoscale atmospheric model 
(MM5). The configuration of MM5 model and values of 
the coefficients for static and dynamic sources used  
for NCEP fields as well as for MM5 model have been  
described in earlier studies9. 
 Based on samples of CO collected every 8 h through-
out the day, CPCB compiles the data from its network by 
non-dispersive infrared spectroscopy method and pro-
vides daily values of pollutants. While the exact observa-
tional error statistics of the instruments used by CPCB is 
not available, we have used representative observational 
errors for non-dispersive infrared spectroscopy for our 
analysis. We have collected this observational error  
information from a report by US-EPA22. The number of 
vehicles (Table 1) was taken from data compiled by  
National Capital Territory of Delhi19 and the emission 
rates of CO for different vehicular types (Table 1) were 
adopted from data provided by Automotive Research  
Association of India20. 
 The forecast skill is calculated by comparing daily 
forecasts generated by driving the air pollution model 

with the meteorological fields from MM5 forecasts. As a 
benchmark for the skill, we consider daily CO concentra-
tions calculated by driving the air pollution model with 
daily meteorological fields from NCEP Reanalysis aver-
aged over Delhi for the day of the forecast. To evaluate 
the performance of the model, root mean square error 
(RMSE) was examined. RMSE (ERMSE) is defined as 
 

 

2
i i

1
RMSE

( )
,

n

i
P O

E
n







 

 
where n = 365 and Pi and Oi are simulated and observed 
values of concentration on the ith day respectively. 
 Comparison of observed daily concentration of CO 
(CPCB) with the model simulations of CO for the years 
2009–2011 (Figure 1) shows that the simulations with the 
two meteorological fields match the observed annual  
cycle well, although the model fails to capture some of 
the observed peaks, especially during the winter season. 
The performance of the model is reflected in the correla-
tion coefficient greater than 0.2, above 95% confidence 
level for the degrees of freedom involved (Figure 1). 
 The daily observations and simulations averaged over 
2009–2011 (Figure 2) show that the simulations capture 
the daily variability well, except for some persistent  
under-predictions in the winter months of November–
December; it is likely that these indicate absence of some 
relevant seasonal sources in the model. In terms of seasonal 
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average (2009–2011), the winter maximum (5.52 mg) is 
followed by summer (2.08 mg) and monsoon (1.88 mg) in 
observation. The corresponding simulated values from 
NCEP and MM5 model-driven simulations are respec-
tively, 4.34 and 4.60 mg in winter, 2.13 and 1.91 mg in 
summer and 1.85 and 1.80 mg during monsoon. Thus the 
seasonal variability in each case is well reproduced by the 
model; with improved winter simulation with mesoscale 
model. Another possible reason for this variability may 
be due to the meteorological conditions. The general me-
teorology over Delhi during winter is dominated by cold, 
dry air and ground-based inversion with low wind condi-
tions, which facilitate stability of the atmosphere and thus 
more stagnant air masses. This can lead to accumulation 
of pollutants in a given area. As seen in our earlier stud-
ies7,8, the winter maxima appear to be significantly con-
trolled by domestic sources in case of SPM, RSPM, SO2 
and NO2. During the summer months, the atmosphere is 
more conducive for the efficient dispersal of the pollutant 
as the average mixing height is typically at its maximum. 
This results in increased mixing processes through a 
greater volume of the troposphere, and hence lower  
 
 

 
 

Figure 2. Average (2009–2011) CO over Delhi from observation 
(CPCB, India) compared with the simulation. The top and bottom  
panels indicate respectively, the simulations driven by NCEP and 
MM5-derived meteorological fields. The benchmark simulations with 
NCEP are based on area-averaged daily fields from NCEP Reanalysis 
(thick line) for the day of the forecast; the mesoscale forecasts are with 
lead of 24 h. The first number within the brackets represents the corre-
lation coefficient between observation and prediction; the second num-
ber represents the significance levels for corresponding correlation 
coefficients. 

pollutant concentrations. The monsoon results in a large 
amount of precipitation, which reduces atmospheric  
pollution via associated wet deposition processes7,8. 
 Scatter plots used for comparison of the observed and 
predicted values for the average over the three years 
show that the MM5 forecasts are better correlated with 
the observations than forecasts with NCEP (Figure 3). 
Predicted and observed CO concentrations are well corre-
lated, with R2 values 0.11 and 0.15 above 95% signifi-
cance level. It was observed from the scatter plots that the 
CO concentrations are underestimated, particularly the 
peak values. The lines drawn over the scatters indicate 
best fit. An examination of year-wise values shows that 
the correlation is significant (Figure 4), indicating robust 
association between the observed and predicted values. In 
particular, for both the averages and the year-wise data, 
the results with MM5 forecasts are better correlated than 
those with NCEP Reanalysis (Figures 3 and 4). 
 While precise and accurate forecasts of pollutant con-
centration are useful, advisories can be issued if reliable 
forecasts of the level (category) of pollution were avail-
able. For a quantitative analysis of this skill, we have 
considered forecast errors as a fraction of the permissible 
value of CO concentration in a residential area (1 mg); 
 
 

 
 

Figure 3. Scatter plots of average (2009–2011) of observed (CPCB, 
India) and predicted CO over Delhi. The top and the bottom panels  
indicate respectively, the simulations driven by NCEP and MM5-
derived meteorological fields. The benchmark simulations with NCEP 
are based on area-averaged daily fields from NCEP Reanalysis for the 
day of the forecast; the mesoscale forecasts are with lead of 24 h. Num-
bers within brackets provide the significance level for the correspond-
ing R2 values. 
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Table 2. Summary of performance 

 2009 2010 2011 Average 
 

Parameter Observed NCEP MM5 Observed NCEP MM5 Observed NCEP MM5 Observed NCEP MM5 
 

Correlation coefficient – 0.22 0.25 – 0.2 0.26 – 0.5 0.45 – 0.22 0.37 
Number of days with error _ 142 174 – 126 135 – 174 180 _ 189 226 
 between –0.5 and +0.5 mg 
Days >permissible level (1 mg) 338 267 296 291 217 241 253 295 279 345 294 300 
Standard deviation (as percentage  57 23.1 20.3 52 24.6 25  60 40 35.6  56  25  40 
 of observed mean) 
No. of days with error less than 
 observational error (0.5 mg) – 117 142 – 124 124 – 184 190 – 131 150 

The simulations with NCEP are based on area-averaged daily fields from NCEP Reanalysis for the day of the forecast; the mesoscale forecasts are 
with forecast load of 24 h. 
 
 

 
 

Figure 4. Scatter plots of observed (CPCB, India) and predicted CO 
over Delhi air basin for 2009–2011. The left and the right panels indi-
cate respectively, the simulations driven by NCEP and MM5-derived 
meteorological fields. The benchmark simulations with NCEP are 
based on area-averaged daily fields from NCEP Reanalysis for the day 
of the forecast; the mesoscale forecasts are with lead of 24 h. 
 
 
thus errors   1 indicate useful skill. An examination of 
the forecast skill in terms of the distribution of errors 
shows that the normalized error is between –1 and +1 for 
most of the days (Figure 5). The distributions of the num-
ber of days in different error bins (fraction of permissible 
value of CO) are almost Gaussian for all the cases; in par-
ticular, there is no appreciable systematic bias. While 
both simulations show comparable results, the mesoscale 
forecasts, in general, have higher number of days in the 
low-error bins. It may be seen that for the average of the 
three years, the number of days with error between –0.5 
to +0.5 mg is 189 and 226 for the simulations with NCEP

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 5. Histogram of errors showing the number of days in differ-
ent error bins (observed–simulated) for the duration 2009–2011. The 
errors are expressed in terms of the permissible value of CO concentra-
tion over residential area. Standard deviation () in the observed con-
centrations (daily values) for each year is given in the respective panel 
for comparison with the errors. The simulations with NCEP are based 
on area-averaged daily fields from NCEP Reanalysis for the day of the 
forecast and mesoscale (MM5) model. The observed data are from 
CPCB. 
 
 
and MM5 respectively (Table 2). The evaluation of 
RMSE indicates that the simulation with NCEP for the 
year 2010 has much larger RMSE; in contrast, RMSE for 
all other cases is less than the standard deviation () in 
the observed concentrations. 
 As another measure of the skill of the forecasts in 
terms of observational errors, we have considered fore-
cast errors normalized to the precision of the instrument22 
(0.5 mg). Histogram of the normalized errors once again 
shows that 65% of the days on average have normalized 
error <1 with MM5 forecasts; the corresponding number 
with NCEP Reanalysis is 54 (Figure 6, bottom right 
panel). This improvement with MM5 forecasts is also 
evident year-wise (Figure 6). 
 In terms of correlation coefficients between daily  
values of observed and simulated concentrations, the 
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Figure 6. Histogram of errors in terms of number of days in different 
error bins for the duration 2009–2011. The errors (mg) have been nor-
malized to a standard observational error (0.5 mg for non-dispersive 
infrared spectroscopy22). Numbers within brackets indicate the percent-
age of days with normalized error <1.0. The simulations with NCEP are 
based on area-averaged daily fields from NCEP Reanalysis for the day 
of the forecast and mesoscale (MM5) model. The observed CO concen-
tration data are from CPCB. 
 
 
mesoscale forecasts improve the correlations, but only 
marginally (Table 2). However, in terms of application-
relevant parameters like the number of days with CO 
concentration below permissible level, the mesoscale 
forecasts are closer to the observed values (Table 2). 
Similarly, the mesoscale forecasts provide more number 
of days in low-error bin (Table 2). 
 The present work provides an assessment of the ability 
of a dynamic air pollution model to simulate daily CO, 
validated against observations over Delhi. An accurate air 
pollution model also provides an effective tool for impact 
assessment for various uses. Together with our earlier  
results7–10, the present work shows that comprehensive 
dynamical air pollution forecasting is feasible. 
 Comparison of air pollution forecasts with the mesoscale 
model and NCEP Reanalysis shows that the skill with 
mesoscale model is useful; extension to forecast at high 
spatio-temporal resolution will be useful for other appli-
cations like traffic management and health advisory. 
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