
International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 3, June 2016

DOI:10.5121/ijcsit.2016.8302 21

A Survey of Service Oriented Architecture Systems
Maintenance Approaches

Hamza Naji
1
 Mohammad Mikki

2

1
Department of Computer Engineering, Islamic University, Gaza, Palestine

2
Department of Computer Engineering, Islamic University, Gaza, Palestine

ABSTRACT

Maintenance of Service Oriented Architectures (SOA) plays an important role in guaranteeing

and previews a successful deployment in any enterprise. The SOA "development and

maintenance" process demands, must apply the traditional system evolution and maintenance

rules. The conditions in SOA are different from the traditional software developing and

maintenance, so we present in this survey paper the roles of SOA system developers and the

different approaches for SOA maintenance systems as a problem's solution of using the

traditional approaches for object oriented system.

KEY WORDS:

SOA, Service, Maintenance, Development, Oriented, Architecture.

1. INTRODUCTION

The small software projects such as calculator program or something else can develop just by

coding it from the start to the end. But when we talk about big software projects we need the

software life-cycle which comprises different phases that are followed in order to outsource a

complete software product. The complete software life-cycle we talked about starts from

requirements then we do the analysis and design phase finally we conclude with testing for the

whole system. The remaining stage, which comes after the delivery is the maintenance. One type

of the software architectures is the service oriented architecture (SOA); this type provides the

ability to call the service instead of objects. Services are the basic architectural elements of SOA,

in addition to reusable components that represent business or tasks, such as customer lookup,

credit card validation, weather lookup, or line-of sight calculation[, ,]. Reusability could be a

key part of this definition because it's what allows the creation of recent business and operational

processes supported from these services. The maintenance is an important phase in service

oriented architecture (SOA) and it demands rethinking of the traditional system evolution and

maintenance roles. In this survey paper we examine the traditional use of the fundamental design

principles in SOA maintenance scenarios after examining the definition of SOA and its elements

in order. We analyze how the nature of maintenance differentiates in SOA with respect to the

traditional software. We focus on the approaches and techniques that address the maintenance

issues in SOA. The rest of the paper is organized as follows: Section 2 establishes the SOA

definition and developers roles. Section 3 shows the SOA maintenance issues and Literature

review. Finally, we tend to conclude the paper in Section 4.

 International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 3, June 2016

2. SERVICE ORIENTED ARCHITECTURE

The SOA system consists of three elements: services (the basic of the SOA system), applications

(that import services and use it), and an SOA infrastruct

applications and services are communicate after connecting) as shown in the SOA process in

Figure number 1 below.

Figure 1: SOA components and processes

Figure 1 as shown presents the SOA components and pr

system that built by services.

2.1 SOA ACTIVITIES

There are some SOA's activates that we can talk about in this subsection as the following:

2.1.1 STOCKHOLDERS

The evaluation process should show all members of the

of them and see how their concerns are addressed, those members, we called them the

stakeholders. When the dependability of the stakeholders of SOA decreases the risk of

overlooking important architectural concern

a system is that it perhaps not to be possible to know all the stakeholders. This is right for SOA

systems because it consist of public services and the stakeholders search for services as their

needs. We will present some common roles below for the traditional systems architecture and

some special roles for SOA . The specific stakeholders chosen for an evaluation will depend on

the needs of the organization. Also, we present the following stakeholders w

to subscribe in the system evaluation architecture:

 2.1.1.1 SYSTEM INSTRUCTION

1. Software Architects. The activities are including experimenting and deciding between

several architectural techniques, providing the interface, and arc

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 3, June 2016

RCHITECTURE (SOA)

The SOA system consists of three elements: services (the basic of the SOA system), applications

(that import services and use it), and an SOA infrastructure (put the roles about how the

applications and services are communicate after connecting) as shown in the SOA process in

Figure 1: SOA components and processes

Figure 1 as shown presents the SOA components and progress of the operation in the whole

There are some SOA's activates that we can talk about in this subsection as the following:

The evaluation process should show all members of the architecture to express activities of each

of them and see how their concerns are addressed, those members, we called them the

stakeholders. When the dependability of the stakeholders of SOA decreases the risk of

overlooking important architectural concerns. One of the challenges of eliciting (QOS) needs for

a system is that it perhaps not to be possible to know all the stakeholders. This is right for SOA

systems because it consist of public services and the stakeholders search for services as their

We will present some common roles below for the traditional systems architecture and

some special roles for SOA . The specific stakeholders chosen for an evaluation will depend on

the needs of the organization. Also, we present the following stakeholders who should be invited

to subscribe in the system evaluation architecture:

. The activities are including experimenting and deciding between

several architectural techniques, providing the interface, and architecture validity and

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 3, June 2016

22

The SOA system consists of three elements: services (the basic of the SOA system), applications

ure (put the roles about how the

applications and services are communicate after connecting) as shown in the SOA process in

ogress of the operation in the whole

There are some SOA's activates that we can talk about in this subsection as the following:

architecture to express activities of each

of them and see how their concerns are addressed, those members, we called them the

stakeholders. When the dependability of the stakeholders of SOA decreases the risk of

s. One of the challenges of eliciting (QOS) needs for

a system is that it perhaps not to be possible to know all the stakeholders. This is right for SOA

systems because it consist of public services and the stakeholders search for services as their

We will present some common roles below for the traditional systems architecture and

some special roles for SOA . The specific stakeholders chosen for an evaluation will depend on

ho should be invited

. The activities are including experimenting and deciding between

hitecture validity and

 International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 3, June 2016

23

verification against the functional and nonfunctional requirements quality attribute

requirements (QAR). The developers of the architecture produce the documentation files

that construct the architectural view for different stakeholders, documenting the risks and

tradeoffs of the architectural design as well as the rationales for design choices.

Architects additionally make sure that the implementation conforms to the design.

2. Developers. Their main activities contained implementing the architectural elements of

the system consistent with the design specification, giving experience throughout detailed

3. design processes, and conducting experiments or making prototypes to validate an

architectural approach.

4. Service Usage Regulators. Their main activities include making rules for service

utilization, like give the specification that services should adapt to certain standards, and

probably putting constraints on the services which will be used.

5. Testers. Their main activities include the plan test for the systems, to excite all of the

planned tests, then save the results of all planned tests, and reporting faults.

6. Integrators. Their main activities are to bind that the architecture and implementation

conform to open and standards are fully accepted, also to consider architectural

approaches that simplify service integration, upgrades, and replacements.

7. Maintenance Developers. This is the main aim of our paper and we will present and

explain their activities in the next section. Their main responsibilities include modifying

the software system to correct defects and adapting the software once environmental

changes occur (e.g., hardware or software system changes).

8. Project Managers. Their main activities include managing the development effort,

creating the project plan, and tracing the progress of the project.

9. Chief Information Officers (CIOs). The CIO activities are to trot out the architects,

developers and business analysts to confirm that a solution can integrate well with

existing systems, applications, and infrastructure.

 2.1.1.2 SYSTEM CONSUMERS

1. Chief Security Officers (CSOs). The CSO works with the architectural engineers,

business analysts, and developers to confirm that each one data security policies are

followed and ensured.

2. Business Managers. Their primary role is to make sure that the appliance supports the

organization’s business goals which the architects perceive all legal and restrictive

implications.

3. Business Analysts for Customers. Their primary roles and responsibilities are to

accumulate and transmit to developers the data of the business domain and functional

requirements and quality attribute needs of the system.

4. End Users. Their main responsibilities include learning to work the system, making

ready and coming into inputs, and deciphering the output from the system. They also

generate system requirements.

5. Developers of Service Users. If the system provides services to external service user

applications, the architects or developers who are liable for these external purchasers

ought to even are invited. These external developers may provide input on application

program interface (API) design and desired quality of service (e.g., availability).

6. Maintenance Developers. They are responsible for general maintenance duties with the

delicate distinction that they'd most possible not be able to modify services and would

 International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 3, June 2016

24

usually be forced to change alternative components of the system. The inability to modify

services would be similar to buying off-the-shelf software.

 2.1.1.3 INFRASTRUCTURE PROVIDERS

The infrastructure side contains a lot of providers as the following:

1. System Administrators.

Their responsibilities include attaining a decent understanding of the system

operation for troubleshooting issues that arise throughout and when deployment.

They typically assume most duties associated with pc security in a corporation (i.e.,

repairs of firewall and intrusion detection systems, management of access rights, and

applying patches to software system and operational systems).

2. Network Administrator.
The network administrator responsible for the network infrastructure maintaining and

troubleshooting issues with routers, switches, and computers on the network.

3. Database Administrators.

They produce and maintain databases, making certain information integrity and

consistent performance of the datacenters management systems.

2.2. NONFUNCTIONAL REQUIREMENTS OF MAINTENANCE PROCESS

The nonfunctional requirements or the quality of services is a common measurement for the SOA

which we can judge of the end service by the nonfunctional requirements. The SOA

nonfunctional requirement is some requirements in the specification of the system that includes

the ability to use services as description documentation provided by the infrastructure providers

we talked about above. Quality of service's can includes these requirements such as (Reliability,

Availability, Usability, Security, Performance, Scalability, Extensibility, Adaptability, and Test

ability). When the previous requirements are taken on consideration in the maintenance process

of SOA Systems. According to the above explanation of quality of services we can now present

the SOA maintenance developers as follows. The SOA components developers can do some tasks

to prepare each of them to work in the system correctly. We will identify each developer and the

particular tasks of them as follows:

 2.2.1 INFRASTRUCTURE DEVELOPERS

Focus on providing a stable infrastructure that has standards, infrastructure services, and

development tools. The infrastructure supports the protocol and data formats of the service's

current and potential clients. Tasks for infrastructure developers include:

• Providing standards to implement as part of SOA infrastructure.

• Identifying discovery, communication, and security services.

• Identifying and developing obligated techniques to satisfy the most important set of

potential service users.

• Providing tools for application and service developers.

• Documenting and supporting the infrastructure.

 International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 3, June 2016

25

2.2.2 APPLICATION DEVELOPERS

Focus on the invention, composition, and invocation of services, either statically at design time or

dynamically at run time. Key tasks for application developers are:

• Give an understanding to the concept of SOA infrastructure.

• Make a discovery process for services that incorporated into applications.

• Reviewing service description documentation.

• Get the appendix to invoke the identified services in applications, including any data

conversions, error handling and availability handling.

• Give a testing process for the whole system after integrate the service in the context of

the application being developed.

2.2.3 SERVICE PROVIDERS

Focus on the outline and roughness of services, in order that applications will simply find and use

them with acceptable Quality of Service. Tasks include:

• Understanding requirements of potential service users.

• Understanding SOA infrastructure.

• Evolving code that receives the service request interprets it into calls into new or existing

systems and produces a response.

• Describing and publishing the service.

• Developing service initialization code and operational procedures.

After we define the SOA activities and components and also define the maintenance process for

both the traditional and SOA architectures now we need to present a quick review of the

literatures to gather some of the approaches used in SOA based systems maintenance and

development in the literature review section.

3. SOA MAINTENANCE ISSUES AND LITERATURE REVIEW

In this section we will review the previous approaches of the SOA maintenance and give the main

ideas for each one. Then we will present the most efficient on of them which do well with our

topic.

The software projects life-cycle start from identifying the idea of the product and then end with

the end of the shelf life of the product. In fact there is no real shelf life for software but it begins

to suffer towards the substantial development of the out of its environment by the high

requirements needs. The architecture of the software must present in models, and these models

contain the life-cycle of any product through abstract descriptions . The final phase in the life-

cycle model is the maintenance and it's what we talking about in this paper. All phases preceding

the maintenance conceded as a per- delivered phases i.e. the developing process of the software

but the maintenance considered as a post delivered phase i.e. the phase generate after the product

been delivered to the costumer. So, the software product is never been delivered as a complete

version because of the requests of changes and violated requirements as the [Lehman Law] rules.

Such requests for changing in requirements originate from the users of the software system, and

 International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 3, June 2016

26

may have a form of bug reports or may be requests for additional functionalities . The notion of

the maintenance is not confined in fixing bug but it consists of the improvement of some of the

aforementioned nonfunctional requirements or quality of services. It is a definition that closes to

the IEEE Standard for software maintenance: Software Maintenance is the process of modifying a

software system or component after delivery to correct faults, improve performances or other

attributes, or adapt to a changed environment.

3.1 SOA MAINTENANCE IMPORTANCE

We can say that services have a service contract with an interface and the evolution aspect seems

to be hidden from the SOA applications users. But in real the providers can change the functional

attribute of the one service (without concern about who will use it) as the requirements without

exposing these changes in their interfaces. Changes in SOA systems may be triggered not only by

the service providers but also by the service consumers themselves, since they may desire

arrangement with another competitor service meeting their new requirements or having better

performance. This phenomenon is called independent service evolution .

3.1.1 RELATED ISSUES

When we talk about traditional software the case is somewhat easy but when we start re-

developing the SOA with the concerned of the all QOS or nonfunctional requirements as much as

possible by its providers without knowing the end user or which applications will use it in the

future.

In this context we need to discuss some issues as follows:

The first issue: After developing the previous changes how we can estimate the influence on

these changes in the whole SOA system according to the system functional and nonfunctional

requirements because it is the importance factor in evolving the software systems . By return to

service -the base element in our paper- when we make the developing process we have to take

into consideration that the evolving service returns its interface and nonfunctional requirements or

dependencies and that mostly conceder to be in complete information about the analysis of the

service. The problem here is how to make the evolution in service that provide or deal just by

interface and what is the influence of the whole system after the final integration with the

developed service. The first approach in this context is [Basuet. et.al.
13

] Give a technique to deal

with dynamic dependencies between services. Building of one dependency is related of the other

identified dependencies between two messages by taking into consideration the appearing of

services to other applications. This experiment was applied on HP business data, SOA based

system consist of several services. [Bertolino et al.
14

] Give a model depends on black-box

approach effect to specify the quality attributes including business requirements just taking

advantage of service interface only. That can be happen by the invocations of its operations. A

deferent system perturbation had been used by [Romano, et al.
15

] to explain the active

dependencies. The use the previous technique to monitor the service work in the system. An

operational dependency graph for a specific combo of system and workload was created by the

active dependency approach while requiring very few details of the internal implementation of

the system. [Ryu et al.
16

] Give a technique to deal with dependencies issues between services by

something called completed conversations. The approach analyzes the strategies of combining the

 International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 3, June 2016

27

service nonfunctional changes and the SOA system. These conversations can produces by the

system check of its executions by decision tree model. This approach will determine the business

protocol dependencies between the system and also the developing service dividing them into

forward and backward dependencies. [Novonty et al.
17

] Give a technique to deal with

dependencies issues between services in a web application. Based on proposes a dependency, and

the deep analysis for the text feature of hyperlink, a regular expression-based linkage information

extraction method is presented. Other techniques are based on the formal or algorithmic

approaches. For more practicability this approach uses mathematical foundations to record the

behavior of the SOA to achieve the dependency handling purposes. [Alda
18

] is one of these

approaches based on the previous technique which have a way for service handling dependences

purposes. She distributes the approach into two steps. The first one is the ability of the costumer

to use group of maintained services relies on public service produced by provider. That's mean

the applying of the generalization of one service to contain a list on inheritances services. [Liu,

Ma and Zhao
19

] is another type of the previous technique which presents the a conversations

dependency between business processes to enhance the evolution with dynamic dependencies of

the SOA based systems this approach is used to define the order of activities in the process and by

this we can produce the conversation dependency. The second issue we want to talk about is the

comprehension of the service which asked by “how” question. The question in this case is how

we can identify the behavior of the service when it evolved.

Now we need to collect the approaches that help the maintenance developers to understand the

evolved service operation and behavior for example the functional and nonfunctional

requirements. We knew that the service can just implemented just by its interface and that make

the comprehension process very hard because we can't access the data required for this task. Now

we want to present some approaches that work well in the previous issue.[Bertolino et al. 2009
20

] is an example of this issue which explained above in the first issue.

The third issue is to provide an approach that helps the maintenance developers to finish the

functional and nonfunctional development attributes of the service and end these process with the

testing of those attributes and making sure if the evolve service performs previous attribute

requirements? Or not. [Bertolino et al. 2009] also provide an approach in this context to test the

functional requirement attribute just based on its interface. The system’s maintainer sends to the

intermediate provider some conversations between the system and the service, which have been

recorded in logs. Following, the intermediate provider acquires coverage data from the service

provider, which show in what extent the conversations cover the functionality of the service. The

coverage data can help SOA system’s maintainer to: a. produce further test cases; b. become

aware of when an adequacy criterion of its test cases is reached; b. update its test cases by adding

tests which cover untested behavior; c. update its test cases by dropping tests that are exercising

the same case; d. update its test cases by collecting coverage data on successive versions of

services.

CONCLUSION

In this paper explain the notion of the SOA based systems software, the successes software

factors, the components of it and the rules of each of the component developers. Then we defined

the functional and nonfunctional requirements attributes and the importance of them in the

maintenance process. Finally we present the importance of maintenance process in the SOA

 International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 3, June 2016

28

based systems and give some approaches in three issues in maintenance (the analysis influencing

in the whole system, the understanding of services attributes, and the testing of services.) and

explained each other. Finally the SOA maintenance topic still need other efforts to enhance the

services maintenance process and it still a big space for researchers to support this area of

research with new effective and creative approaches.

REFRENCES

[1] Grace Lewis, 2010“ Getting Started with Service Oriented Architecture (SOA)Terminology “

http://www.sei.cmu.edu/training/p81.cfm .

[2] Bromberg, Y.D., Issarny, V.(2005): INDISS: interoperable discovery system for networked services.

In: Middleware 2005, ACM/IFIP/USENIX, 6th International Middleware Conference, Grenoble,

France, November 28 - December 2, 2005, Proceedings. 164–183.

[3] Pistore, M., Traverso,(2007) P.: Assumption-based composition and monitoring of web services. In:

Test and Analysis of web Services. Springer. 307–335.

[4] Phil Bianco, Rick Kotermanski,, Paulo Merson (2007). Evaluating a Service - Oriented

Architecture , Software Engineering Institute .

[5] O’Brien, Liam; Bass, Len; & Merson, Paulo. (2005) "Quality Attributes and Service-Oriented

Architectures". Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University.

[6] Xiao, H., Guo, J., and Zou, Y. 2007. Supporting change impact analysis for service oriented business

applications. In Proceedings of the 1st ACM International Workshop on Systems Development in

SOA Environments (SDSOA).

[7] John McDermid, 1992, "Software Engineer's Reference Book", Butterworth-Heinemann,(November

2,3),P 170.

[8] Lehman, M. M. 1996. Laws of Software Evolution Revisited. In Proceedings of the 5th European

Workshop on Software Process Technology (EWSPT).

[9] Bennett, K. H. and Rajlich, V. 2000. Software maintenance and evolution: a roadmap. In

Proceedings of the 22th ACM International Conference on Software Engineering (ICSE).

[10] IEEE. 1998. IEEE Standard for Software Maintenance. Tech. rep., IEEE. International Standards

Organization. 1998. Software Engineering-Software Maintenance.

[11] Canfora, G., Penta, M. D. 2006. SOA: Testing and self-checking. In Proceedings of the 1st

International Workshop on Web Services-Modeling and Testing (WS-MaTE).

[12] de Souza, C.R.B 2005. On the Relationship between Software Dependencies and Coordination: Field

Studies and Tool Support. Ph.D. dissertation, Donald Bren School of Information and Computer

Sciences, University of California, Irvine.

[13] S. Basu, F. Casati, F. Daniel, 2008 “Toward web service dependency discovery for SOA

management,” In: Proceedings of IEEE International Conference on Services Computing.

[14] Bertolino, A., Inverardi, P., Pelliccione, P., and Tivoli, M. 2009. Automatic synthesis of behavior

protocols for compostable web-services. In Proceedings of the 7th joint meeting of the European

Software Engineering Conference and the 17th ACM SIGSOFT International Symposium on

Foundations of Software Engineering.

[15] D. Romano, M. Pinzger, E. Bouwers, 2011 “Extracting dynamic dependencies between web services

using vector clocks,” In: Proceeding of IEEE International Conference on Service-Oriented

Computing and Applications.

[16] Ryu, S. H., Casati, F., Skogsrud, H., Benatallah, B., and Saint-Paul, R. 2008. Supporting the

dynamic evolution of Web service protocols in service-oriented architectures. ACM Transactions on

the Web.

[17] P. Novotny, A. L. Wolf, B. J.Ko, S Lee, 2013 “Discovering service dependencies in mobile ad hoc

networks”, Proceedings of the IFIP/IEEE International Symposium on Integrated Network

Management .

 International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 3, June 2016

29

[18] S. Alda, 2005 “Peer group – based dependency management peer-to-peer architectures,”

Proceedings of the 2005 International Conference on Databases, information systems, and peer-to-

peer computing.

[19] M. Liu, D. Ma, and Y. Zhao, 2009 “An approach to identifying conversation dependency in service

oriented system during dynamic evolution,” In: Proceedings of the 2009 ACM symposium on

Applied Computing.

[20] Bertolino, A., Inverardi, P., Pelliccione, P., and Tivoli, M. 2009. Automatic synthesis of behavior

protocols for compostable web-services. In Proceedings of the 7th joint meeting of the European

Software Engineering Conference and the 17th ACM SIGSOFT International Symposium on

Foundations of Software Engineering.

Authors

Mohammad A. Mikki: is a professor of parallel and distributed computing in the

computer engineering Department at IUG with about twenty years of research,

teaching, and consulting experience in various computer engineering disciplines. Dr.

Mikki was the first chairman of the electrical and computer engineering (ECE)

department at IUG in the academic year of 1995-1996. He taught both graduate and

undergraduate courses at the ECE department at IUG. In addition he taught several

undergraduate courses at the College of Science and Technology, College of Education (currently Al-

Aqsa University), Al-Quds Open University, and University of Palestine. He was a visiting Professor at

the Department of Electrical and Computer Engineering at University of Arizona in Tucson, Arizona

(USA) during the academic year of 1999-2000. He was granted DAAD Study Visit Scholarship to

Paderborn University in Paderborn in Germany from July 2002 to August 2002 from DAAD (German

Academic Exchange Service). Dr. Mikki published about thirty publications in both international journals

and conferences.

Hamza Naji: has graduated in 2013 with B.Sc. in Software Engineering from

University of Palestine Gaza, then start studding M.Sc. Of Computer Engineering in

the Islamic University of Gaza in 2014/2015. His research interests in the field of

"Data Mining" and "Software Engineering".

