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ABSTRACT 

 
While advanced analysis of large dataset is in high demand, data sizes have surpassed capabilities of 

conventional software and hardware. Hadoop framework distributes large datasets over multiple 

commodity servers and performs parallel computations. We discuss the I/O bottlenecks of Hadoop 

framework and propose methods for enhancing I/O performance. A proven approach is to cache data to 

maximize memory-locality of all map tasks. We introduce an approach to optimize I/O, the in-node 

combining design which extends the traditional combiner to a node level. The in-node combiner reduces 

the total number of intermediate results and curtail network traffic between mappers and reducers. 
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1. INTRODUCTION 
 
Hadoop is an open source framework that provides a reliable storing of large data collections over 

multiple commodity servers and parallel processing of data analysis. Since its emergence, it has 

firmly maintained its position as de facto standard for analyzing large datasets. Without in-depth 

understandings of complex concepts of a distributed system, developers can take advantages of 

Hadoop APIs for an efficient management and processing of the big data. 

 

HadoopMapReduce[1] is a software framework built on top of Hadoop used for processing large 

data collections in parallel on Hadoop clusters. The underlying algorithm of MapReduce is based 

on a common map and reduce programming model widely used in functional programming. It is 

particularly suitable for parallel processing as each map or reduce task operates independent of 

one another. MapReduce jobs are mostly I/O-bound as 70% of a single job is found to be I/O-

intensive tasks [2]. A typical MapReduce job is divided into three sequential I/O-bound phases: 

 

(1) Map phase: Locations of input data blocks distributed over multiple data nodes are retrieved 

via NameNode. Blocks are loaded into memory from local disk and each map task processes 

corresponding blocks. Intermediate results from each map task are materialized in map output 

buffers. When the contents of a buffer reach a certain threshold size, they are spilled to local 

disk. 

(2) Shuffle phase: Once a map task is completed, spilled contents are merged and shuffled across 

the network to corresponding reduce tasks. 

(3) Reduce phase: Each reduce task process received key groups. Similar to the map phase, 

reduce inputs are temporarily stored in reducer output buffers and periodically spilled to disks. 

Once all groups are processed, final results are written to HDFS as raw files. 

 

An increase in demand for non-batch and real-time processing using Hadoop has made 

performance the key issue for many MapReduce applications. A tolerable job completion time is 
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vital for any performance-oriented jobs thus an efficient MapReduce job must aim to minimize 

the number of I/O operations performed in each I/O-intensive phase described above [2]. In this 

paper, we show how caching the input data and locally aggregating intermediate results using the 

in-node combiner can optimize the overall performance of a MapReduce job. 

 

This paper is organized as follows. Section 3 gives an overview of the HadoopMapReduce 

framework, describes the two bottlenecks found in MapReduce jobs and proposes two solutions 

for eliminating them. The algorithm for the in-node combiner, an enhancement to the traditional 

combiner, is demonstrated using a word count example in Section 4. Section 5 discusses the 

experimental results for counting daily word occurrences in Twitter messages using three 

different combining design patterns. 

 

2. RELATED WORK 
 

2.1 Hadoop Distributed File System 
 

Hadoop Distributed File System (HDFS) [3] is a Java-based file system that provides a scalable 

and reliable data storage system. It is built on top of the local file system and is able to support up 

to few petabytes of large dataset to be distributed across clusters of commodity servers. HDFS is 

the basis for most of Hadoop applications. It consists of a single NameNode and a number of 

DataNodes. The NameNode is responsible for managing the cluster metadata and the DataNode 

stores data blocks. All data stored in HDFS is broken down into multiple splits and distributed 

throughout the DataNodes. This allows large datasets beyond a capacity of a single node to be 

stored economically and also enables tasks to be executed on smaller subsets of large data sets. 

HDFS makes several replicas (3 by default) of all data blocks and stores them in a set of 

DataNodes in order to prevent data lose in case of hardware failures. At least one copy is stored at 

a different rack and thus both fault tolerance and high availability are assured. This feature allows 

a cluster to operate normally even with a node failure since data is guaranteed to be stored across 

multiple DataNodes [4-6]. 
 

A Hadoop job is commonly divided into a number of tasks running in parallel. Hadoop attempts 

to schedule a task with a consideration of data block locations. It aims to allocate tasks to run at 

where the corresponding data block resides. This feature minimizes unnecessary data transfer 

between nodes. 

 

2.2 HadoopMapReduce 
 

MapReduce[3] is one of many programming models available for processing large data sets in 

Hadoop. While Hadoop framework efficiently maintains task parallelization, job scheduling, 

resource allocation and data distribution in the backend, the MapReduce framework simply has 

two major components, a mapper and a reducer, for data analysis.  
 

A mapper maps every key/value record in the dataset by arbitrary intermediate keys and a reducer 

generates final key/value pairs by applying computations on the aggregated pairs. The strength of 

MapReduce framework lies in running such simple but powerful functions with Hadoop’s 

automatic parallelization, distribution of large-scale computations and fault tolerance features 

using commodity hardware. 
 

The top-level unit of each MapReduce task is a job. A job has several mappers and reducers 

allocated by the underlying scheduler depending on various factors including the size of input and 

available physical resources. The developer, with a minimum knowledge of a distributed system, 

simply needs to write Map and Reduce functions which are available as Hadoop APIs in various 

programming languages, to take advantage of the framework. The MapReduce model can be 
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applied to various applications including distributed grep, graph problems, invert

distributed sort. Figure 1 describes a workflow of a common MapReduce job.

 

Figure 1.

 

A detailed walkthrough of a MapReduce application is now described. The Input data files stored 

in HDFS are split into M pieces of typically 64MB per piece and distributed across the cluster. 

Once a MapReduce job is submitted to the Hadoop system, several map and reduce tasks are 

generated and each idle container is assigned either a map task or a reduce task. A conta

is assigned a map task loads the contents of the corresponding input split and invokes MAP 

method once for each record. Optionally on the user’s request, SETUP and CLOSE methods may 

run prior to the first or after the last MAP method call respecti

it passes key and value variables to EMIT method, which then pairs are temporarily stored in a 

circular in-memory output buffer along with corresponding metadata. Figure 2 describes a 

structure of a circular map output buff

size (80% by default), all key/value pairs are partitioned based on their keys and finally spilled to 

local disk as a single spill file per buffer. The number of partitions is equal to the total n

reduce tasks allocated for the job. Combiners, which are mini reduce tasks that combine 

intermediate results, may occasionally run on each partition prior to disk spills. Once all records 

have been processed, spill files of a task are merged as a 

partition is transferred to the corresponding reducer across the network. This stage of the task is 

referred to as the shuffle phase. Figure 3 describes a workflow of the shuffle phase.

 

          Figure 2.Circular map output buffer.
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applied to various applications including distributed grep, graph problems, invert

distributed sort. Figure 1 describes a workflow of a common MapReduce job. 

 
Figure 1.A workflow of typical MapReduce job. 

A detailed walkthrough of a MapReduce application is now described. The Input data files stored 

into M pieces of typically 64MB per piece and distributed across the cluster. 

Once a MapReduce job is submitted to the Hadoop system, several map and reduce tasks are 

generated and each idle container is assigned either a map task or a reduce task. A conta

is assigned a map task loads the contents of the corresponding input split and invokes MAP 

method once for each record. Optionally on the user’s request, SETUP and CLOSE methods may 

run prior to the first or after the last MAP method call respectively. Upon each MAP method call, 

it passes key and value variables to EMIT method, which then pairs are temporarily stored in a 

memory output buffer along with corresponding metadata. Figure 2 describes a 

structure of a circular map output buffer. Once the contents of a buffer reaches certain threshold 

size (80% by default), all key/value pairs are partitioned based on their keys and finally spilled to 

local disk as a single spill file per buffer. The number of partitions is equal to the total n

reduce tasks allocated for the job. Combiners, which are mini reduce tasks that combine 

intermediate results, may occasionally run on each partition prior to disk spills. Once all records 

have been processed, spill files of a task are merged as a single partitioned output file. Then each 

partition is transferred to the corresponding reducer across the network. This stage of the task is 

referred to as the shuffle phase. Figure 3 describes a workflow of the shuffle phase. 

lar map output buffer.              Figure 3.MapReduce shuffle phase.
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applied to various applications including distributed grep, graph problems, inverted index and 
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The reduce task sorts and groups received intermediate pairs by their keys preferably in memory 

but if their sizes exceed the memory limit, an external sort is used. Once pairs are sorted, 

REDUCE method is invoked once per each key group and the output is appended to a final output 

file. Finally one output file per reduce task is stored in HDFS. Figure 4 describes an example of a 

MapReduce job. 

 

 
 

Figure 4.An example of a MapReduce job. 

 

2.3 Hadoop I/O optimization 

 
The most mentioned weakness of HDFS is its poor I/O performance. Attempts to solve this 

problem can be classified into either combining stored files into forms of databases or modifying 

the existing HDFS I/O features [7]. The former approach improves system throughput rather than 

I/O performance by providing efficient indexing of data blocks. The second approach requires a 

complete re-design of the entire Hadoop system, which comparatively is dangerous. As a simple 

but practical alternative, utilizing an in-memory data storage system to cache input data is proven 

to be the most effective method for improving I/O performance of any data-intensive tasks. 

 

Ananthanarayanan et al. [2] built PACMan, an input data caching service that coordinates access 

to the distributed caches. Two cache eviction policies, LIFE and SIFE, are implemented within 

PACMan. LIFE evicts the cached blocks of the largest incomplete file and SIFE replaces cached 

blocks with the smallest incomplete file. These two policies aim to optimize for job completion 

time by maximizing memory-locality of tasks. Overall job completion times were reduced by up 

to 53% with LIFE and cluster utilization improved by up to 52% with SIFE.  

 

Zhang et al. [7] pointed out the poor HDFS file access performance as the major drawback of 

Hadoop. In order to provide high access performance without altering the existing HDFS I/O 

features, they built a novel distributed cache system named HDCache which periodically makes 

snapshots of local disk in shared in-memory caches that are forged as local disks to Hadoop. By 

storing replicas in different caches for every cached files, disk I/O is substituted for either local 

memory access or network I/O which leads to a significant improvement in overall performance.  

 

Senthikumar et al. [8] implemented Hadoop R-Caching, a caching system that adopts an open 

source in-memory database, Redis, as both global and local cache layers for HDFS. Redis, a high 

performance in-memory key-value storage, has been proven for its stability and efficiency not 

only as a database but also as a cache for Hadoop. 

 

While caching input data to maximize memory-locality of MapReduce tasks significantly reduces 

disk I/O operations in the map phase, I/O bottleneck during the shuffle phase is a significant 

performance degradation factor. Crume et al. [9] showed preliminary designs of approaches to 

compress intermediate data, which up to five orders of magnitude reduction the original key/value 

ratio was observed. 
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Dean and Ghemawat[1] suggested using combiners to reduce the size of intermediate results in 

MapReduce jobs. Lin and Schatz [10] introduced the in-mapper combining design, which is an 

improvement of the traditional combiner. This design guarantees the execution of combiners by 

moving the combining function within the map method. 

 

2.4 NoSQL 

 
While many modern applications require data with various formats and sizes to be stored and 

accessed simultaneously, typical Relational databases do not meet these requirements as they are 

not optimized for scalability and agility challenges. Most relational databases require data schema 

to be strictly defined and guarantee ACID properties to ensure database reliability. ACID 

properties are: 

 

• Atomicity: Each transaction is atomic that either a transaction is fully completed or not 

executed at all. A failure of a part of transaction must lead to a failure of an entire transaction. 

•Consistency: Only valid information is written to the database. All operations must abide by 

customary rules and constraints. 

•Isolation: Each transaction is isolated from any other transactions running concurrently. 

Concurrent transactions must not interfere with each other. 

•Durability: Committed transactions must be stored permanently even in the event of system 

failures or errors. Restoration of committed transactions should be ensured through database 

backups and transaction logs. 

 

ACID properties guarantee the database reliability but their strictness are not suitable for 

simplicity and scalability which many modern applications require. NoSQL (Not Only SQL) 

database [11] is developed in response to a rise in volume of data and high data access/write 

performance. NoSQL databases generally do not require a predefined schema thus data with 

various formats can be easily added to the application without significant changes. In oppose to 

ACID properties, NoSQL databases are based on the BASE paradigm and the CAP theorem. 

BASE paradigm stands for Basically Available, Soft state, Eventually consistency. It makes a 

tradeoff to consistency for availability and performance. NoSQL databases can achieve only two 

of the three CAP theorem. Either a system guarantees consistency and partition tolerance, 

availability and partition tolerance or consistency and availability. By sacrificing some strengths 

relational databases have, NoSQL database is able to provide highly scalable system which large 

volume of data is distributed across commodity servers and thus high read/write performance is 

achieved [12-14]. There are four types of data models supported by NoSQL databases: 

 

•Key-value: records are stored as key-value pairs. (Redis, Memcached, Dynamo) 

•Column oriented: records are stored as sparse tabular data. (Bigtable, Cassandra, HBase) 

•Document oriented: each record is a document that contains multiple fields. (MongoDB) 

•Graph oriented: records are stored as graph nodes and edges. (Neo4j) 

 

Support for flexible data models and high performance make NoSQL database a perfect choice 

for caching frequently accessed/modified data. NoSQL databases have been adopted as both 

dynamic caches and primary data stores by various enterprises. In this paper, we utilize Redis, an 

in-memory NoSQL database, as our cache layer for both input data and intermediate results of 

MapReduce jobs. 
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3. BACKGROUND 
 
MapReduce framework is a powerful model for processing large datasets in a distributed 

environment. As described in the previous section, each MapReduce phase requires multiple disk 

and network I/O operations. A typical MapReduce job consumes relatively low resource on 

computing whereas 79% of a job is I/O intensive [2]. In order to improve overall performance of 

a MapReduce job, unnecessary I/O operations must be minimized. In this section, we identify two 

significant I/O bottlenecks faced by MapReduce jobs and solutions for resolving those issues. 

 

3.1 HDFS bottleneck 

 
The poor performance of Hadoop is rooted in its nature of batch processing and HDFS, which is 

optimized for high throughput rather than high I/O performance. Redesigning the processing 

module can solve the former cause. However the weakness of HDFS inherently is caused by 

underlying hardware and its design principles [15]. 

 

HDFS is primarily designed for storing and processing vast volumes of data. It follows write-

once-read-many model, which thus simplifies data coherency and enables high throughput access. 

However, such requirement has led to a comparatively large data block size (64MB by default) 

and consequentially resulted in inefficient random write and read performance. Data-intensive 

tasks such as MapReduce jobs require high file access performance. Once a MapReduce job is 

submitted, NameNode retrieves locations of all data blocks needed for the job then each allocated 

task loads blocks from local disk to memory and processes each records. While Hadoop tries to 

maximize data locality by assigning tasks at nodes where the target data resides, loading multiple 

large blocks into memory is still significant performance degrading operations. Without 

modifying the core of HDFS, reducing HDFS I/O within a MapReduce job is the most effective 

approach for enhancing file access performance. 

 

3.1.1 In-memory cache 

 
Utilizing an in-memory cache to maximize memory-locality of a MapReduce job has been proven 

to be efficient for reducing HDFS I/O operations. An additional thread periodically loads data 

blocks stored in HDFS into in-memory cache and evict them according to appropriate eviction 

policies and task schedules. Instead of directly loading large data blocks from HDFS to memory 

at every data request, caches are queried for data availability as a priority. A significant 

improvement in performance is guaranteed when all input data is cached and hence HDFS I/O 

during the data read phase is at its minimum [2]. In-memory cache systems such as Memcached 

and Redis provide not only high throughput but also high file access rate and are adequate choices 

for caches. Figure 5 describes an overview of an in-memory cache for a MapReduce job. 
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Figure 5.An in-memory cache for HadoopMapReduce. 

 

3.2 In-Memory cache 

 
During the shuffle phase of a MapReduce job, intermediate results generated by a map task are 

temporarily stored in a circular output buffer and periodically spilled to disk and finally shuffled 

to corresponding reducers across the network. The total number of I/O operations during this 

phase depends on the amount of intermediate results and the number of reducers to transfer to. 

Reduce tasks generally do not begin reduce functions until all input data have been processed by 

map tasks. The time taken to process all records and transferring intermediate pairs to 

corresponding reducers account for significant portion of overall processing. A research [16] 

shows that the shuffle phase accounts for 26%-70% of the running time of 188,000 MapReduce 

jobs ran by Facebook. This confirms that transferring data between successive phases is a severe 

bottleneck in MapReduce jobs. Hence, optimizing network activity at this phase is critical for 

improving job performance. As the most simple but efficient solution for minimizing the volume 

of intermediate data emitted by map tasks, we introduce three different combining design patterns 

in this section. 

 

The combiner function [3] is a useful extension provided as a Hadoop API that performs partial 

merging of intermediate data prior to sending them across the network to reducers. In a case 

where intermediate results contain significant number of repetitions that are destined for the same 

reducer; the combiner can substantially reduce the amount of intermediate results and therefore 

save substantial network communication cost without altering the final outputs. 

 

3.2.1 Combiner 

 
The combiner is a mini-reducer that operates on data generated by map tasks. It is executed in 

isolation per task and performs local aggregation between map and reduce tasks to curtail 

network traffic. A combiner function in general is identical to the reduce function except its 

output types must match reducer’s input types. Combiners by implementation are designed to run 

at most twice during the map phase. The first run is prior to spilling of contents stored in each 

map output buffer and the second run is on merging stage of spill files at the end of a map task. 

Theoretically combiners should substantially improve overall performance of MapReduce jobs 

with high population of combinable intermediate results by cutting down the network 

communication cost. However, two significant drawbacks lie within using combiners: 
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•  Execution of a combiner is not guaranteed: Combiners may not be executed on some occasions 

as Hadoop may choose not to run them if execution is determined to be inefficient for the 

system. A known but configurable occasion is when the number of spill files does not exceed 

the configured threshold (3 by default). Other occasions are systemically not controllable by 

developers. Such randomness may cause undesired situations where combinable intermediate 

results are not fully combined thus missing out on potential optimizations. 

• Size of emitted map outputs is not optimized: The emitted results are temporarily stored in in-

memory buffers and the combining function is applied on them before spilling them to local 

disk. Thus combiners do not actually reduce the number emitted results. This characteristic 

leads to situations where map output buffers are filled with soon-to-be combined outputs 

causing more spill files to be generated. 

 

3.2.2 In-Mapper combiner 

 
The in-mapper combiner (IMC) [10] resolves the two problems of the traditional combiner 

addressed above. The key idea of IMC is to run the combining function inside the map method to 

minimize the volume of emitted intermediate results. Instead of emitting results to map output 

buffers at every invocation of the MAP method, IMC stores and aggregate results in an 

associative array indexed by output keys and emit them at the end of the map task. This approach 

guarantees the execution of combiners and substantial reduction in the total number of emitted 

map outputs. Figure 6 shows a pseudo code for a word count MapReduce job with IMC design 

pattern. The total number of map outputs sent across the network is O(R) for a simple word count 

MapReduce job without a combiner and O(KM) for a job with IMC, where R corresponds to the 

total number of input records, K corresponds to the number of distinct keys in the dataset and M 

corresponds to the total number of allocated mappers for the job. Because the scope of IMC is 

bound to a mapper and its execution is guaranteed and the effectiveness of IMC increases relative 

to the total number of mappers, which by far is smaller than the total number of records. Figure 7 

shows an example of a MapReduce job using in-mapper combining design. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.Algorithm 1: Word count algorithm with IMC design pattern. 

 

1: class Mapper 

2:  method Setup() 

3:   H ← InitAssociativeArray() 

4:  method Map(long id, twit t) 

5:  d ← ExtractDate(t) 

6:   W ← BagOfWords(t) 

7:   for all words w ∈W do 

8:    H{d, w} ← H{d, w} + 1 

9:  method Cleanup() 

10:   for all date-word-pair dw∈ H do 

11:    Emit(date-word-pair dw, count H{d, w}) 

1: class Reducer 

2:  method Reduce(date-word-pair dw, counts [c1, c2, ....]) 

3:   s ← InitCount() 

4:   for all count c ∈ counts do 

5:    s ← s + c 

6:   Emit(date-word-pair dw, sum s) 
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Figure 7.A MapReduce job with the in-mapper combining design. 

 

4. OUR APPROACH 
 

The in-mapper combiner is capable of resolving the problems of traditional combiner and 

improves the overall performance substantially. The combining function of a traditional combiner 

runs in a separate thread from the main mapper thread. As long as the map output buffer is not 

fully occupied, the map method is executed in parallel with the combining function. However, in 

order to guarantee execution of combiners, IMC withdraws parallelism by moving the combing 

function within the map method. Each map task is required to maintain an associative array for 

storing intermediate results. Often when dealing with large data sets with IMC, the size of distinct 

keys stored in an associate array exceeds heap size of a map task therefore causing a memory 

overflow. An explicit memory management is necessary for such case. When the size of the array 

grows beyond its capacity at key insertion, least recently updated records are evicted and emitted 

to buffers to free up memory. 
 

Similar to the traditional combiner, the scope of IMC is limited within a single map task. 

However Hadoop’s strength lies in its capability for parallel processing. Typically multiple map 

tasks each processing different data splits run in each node in parallel. Taking this into account, 

the scope of IMC can be extended to a node-level by combining all intermediate results generated 

within the same node for further optimization. As an improvement to IMC, we propose a new 

combing design pattern called the in-node combiner. 
 

4.1 In-Node Combiner (INC) 
 

The key idea of the in-node combiner is to combine all intermediate results generated within a 

node. Instead of maintaining a single associative array for each map task, arrays are merged into a 

single locally shared data structure that stores all intermediate results in the same node. All map 

tasks aggregate results in a locally shared cache and the last map task running in the node emits 

results stored in the cache. Figure 8 shows a pseudo code for a word count MapReduce job with 

the in-node combining design pattern. 
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The in-node combiner has two significant benefits over IMC: 
 

• Total number of emitted results by a node is minimized: The domain of local aggregation 

is extended to node level leading to a further reduction in the total number of emitted 

intermediate results. By consuming smaller portion of map output buffers and forcing 

only the last mapper to emit locally combined results, fewer spill files are generated. 

Finally, reduced intermediate result size guarantees substantial reduction in network 

communication cost. 

• Combining function is executed in a separate thread: IMC made a tradeoff between 

parallelism and performance. Combining function was replaced into the map method. 

However, by using an in-memory cache system that runs outside of Hadoop for storing 

intermediate results, INC shifts the responsibility for combining, managing memory and 

indexing to a separate thread.  

 
1: class Mapper 

2:  method Setup() 

3:   C <- InitCache() 

4:  method Map(long id, twit t) 

5:  d ← ExtractDate(t) 

6:   W ← BagOfWords(t) 

7:   for all words w ∈W do 

8:    C{d, w} ← C{d, w} + 1 

9:  methodCleanup() 

10:   for all date-words dw∈ H do 

11:   if ( C{d, w} > threshold OR isLastMapper ) 

12:     Emit( {d, w}, count C{d, w} ) 
 

 

Figure 8.Algorithm 2: Word count algorithm with INC design pattern. 

 

In order to prevent cache overflows due to excessive amount of distinct keys, two properties are 

checked at map method invocation. If a key has a value larger than a certain threshold (pre-emit 

threshold), it is immediately emitted by the current map task. The number of results emitted by 

the last mapper thus is slightly reduced. This approach is particularly effective for partially sorted 

initial data sets where similar keys are likely to be handled by the same map task. A task also 

periodically checks the current cache size and evicts a portion of combined results to free up 

memory. 

 

The number of intermediate results transferred across the network decreases to O(KN) for a word 

count MapReduce job using INC, where N corresponds to the total number of data nodes. The 

performance of INC increases relative to the number of data nodes in the cluster. When pre-emit 

threshold is set to infinity and memory is sufficient enough to store all keys, the total number of 

network I/O operations is equal to the sum of distinct keys stored in each node cache. The number 

of participating data nodes by principle is far smaller than the number of allocated map tasks, thus 

substantial performance enhancement is expected with INC. Figure 9 and 10 describe an 

overview of a MapReduce job using INC. 
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Figure 9.An overview of a MapReduce job with in-node combiner. 

 

 

Figure 10.In-node combiner example. 

 

4.2 Implementation 

 
Our architectural goal is to avoid altering the existing Hadoop features. Modifying the core of any 

systems is not only complex but may violate the original design principles. Any newly 

implemented features must be fully compatible with and independent of existing Hadoop features. 

Thus aggressive use of Hadoop API and other existing stable systems are the prior considerations 

for our implementation. 

 

An implementation of a Hadoop in-memory cache can be either an entirely new system designed 

primarily for Hadoop or a modification of an existing cache system. For our purpose, we chose to 

make a use of an existing cache system that best satisfies our requirements. Of many available 

cache systems, Memcached and Redis are the two most predominant in-memory key/value data 

stores available as open-source. Their usage is not only limited to caches but also primary 

databases for various applications [17].  

 

REmoteDIctionary Server known as Redis is an open-source in-memory data structure store. It is 

a popular key-value cache and a database. One notable difference Redis has compared to 

Memcached is that keys in Redis can be mapped to non-string data types including lists, sets, 

sorted sets and hashes allowing data to be stored and handled is various formats. Redis also 

supports full snapshot mechanism and disk serialization. Either data is asynchronously stored to 

disk periodically or all data modifying operations are logged in log files. Although in its beta 

phase, Redis also provides full clustering features that include auto partitioning, live 

reconfiguration and fault tolerance. Our quad-core machine can process 232k SET requests per 

second and 227k GET commands per second. 

 

Redis provides a built-in protection allowing the user to set a max limit to memory usage. Redis 

will either return error messages to write commands or evict least recently used keys when the 
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max memory limit is reached. Redis can handle up to 232 keys in a single instance. An empty 

instance used about 1MB and 1 million hashes with 5 fields occupy only around 200MB. Due to 

its exceptional read/write performance, support for various data types and efficient memory usage, 

Redis is the perfect choice for our cache and a data store. 

 

4.2.1 System architecture 

 
We set multiple Redis instances at each node, which are clustered into a single global Redis 

instance. Performance enhancement is guaranteed only when the entire input data for the job is 

cached, an occasion where only a fraction of data is cached may even lead to performance 

degradations. In order to observe the effects of fully loaded caches with 100% memory hit ratio, 

we deliberately loaded the entire data into the Redis cluster. Each record is stored in a hash with 

multiple fields. Hash types in Redis has a constant lookup speed. 

 

A custom InputFormat is implemented to directly read each hash bucket from local Redis 

instances instead of regular batch files. The RedisHashInputFormat assigns each Redis instance as 

a single input split, therefore the number of allocated map tasks for a job is equal to the total 

number of local Redis instances. The RedisHashInputFormat retrieves a list of all keys stored in 

the corresponding local Redis instance at its initialization. Each record is retrieved at each 

nextKeyValue method invocation. 

 

A container in Hadoop is a collection of physical resources allocated by the ResourceManager 

upon job submission. The number of allocated containers varies by the required resources for the 

submitted job. RMContainerAllocator class is responsible for allocating either map or reduce 

tasks to containers. In our system, upon assigning a map task to a container, each container 

establishes a connection to the local Redis cache and updates the total number of allocated map 

tasks within the same node under a configured key. Each map task also updates its status on task 

completion in the local cache allowing other map tasks in the same node to be aware of overall 

job status. Each map task compares the total number of map tasks to the completed map tasks 

stored in the cache to verify if it is the last mapper running in the node. Instead of storing 

intermediate results in an isolated associative array, they are stored in the local Redis cache. For 

memory efficiency, each intermediate key-value pair is stored under one of many hash buckets. 

Figure 11 and 12 shows an overview and a workflow of our system respectively. 

 

 
 

Figure 11.System overview. 
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5. EXPERIMENT 
 
Our Hadoop cluster consists of four physical nodes each running CentOS 6.5 with Hadoop 2.5.1 

and equipped with a Intel i7 Quad

instances run at each node, of which two are globally clustered and the other 

node combiner cache.  

 

The dataset used for the experiment is a set of random Twitter messages known as tweets 

published in March of 2013. A tweet has 6 fields; tweet id, message, original tweet id, date of 

submission and user id. Each tweet is separated by a new line character and multiple duplicates 

may exist due to the retweet feature. There are total of 20 files (12GB) each containing different 

number of unsorted tweets.  

 

We implemented two simple MapReduce algorithms for performa

algorithm is a word count algorithm that counts occurrences of every word in Twitter messages 

and outputs results in separate files per day. Another MapReduce job computes relational status 

between Twitter users using mention tags

particular user by writing username followed by at

author and the mentioned user are expected to have a relationship. Messages and referring user 

ids are aggregated per user using our algorithm. Figure 13 shows a pseudo

MapReduce job. 
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Figure 12.System workflow. 

 

Our Hadoop cluster consists of four physical nodes each running CentOS 6.5 with Hadoop 2.5.1 

and equipped with a Intel i7 Quad-Core CPU, 8GB of RAM and 11TB HDD. Three Redis 2.9 

instances run at each node, of which two are globally clustered and the other is used as a local in

The dataset used for the experiment is a set of random Twitter messages known as tweets 

published in March of 2013. A tweet has 6 fields; tweet id, message, original tweet id, date of 

h tweet is separated by a new line character and multiple duplicates 

may exist due to the retweet feature. There are total of 20 files (12GB) each containing different 

We implemented two simple MapReduce algorithms for performance comparisons. The main 

algorithm is a word count algorithm that counts occurrences of every word in Twitter messages 

and outputs results in separate files per day. Another MapReduce job computes relational status 

between Twitter users using mention tags. Twitter’s mention feature directs a message to a 

particular user by writing username followed by at-sign. If a tweet contains mention tags, its 

author and the mentioned user are expected to have a relationship. Messages and referring user 

ted per user using our algorithm. Figure 13 shows a pseudo-code for our second 
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1: class Mapper 

2:  method Map(long id, twit t) 

3:   M ← getMentionTags (t) 

4:   for all users m ∈ M do 

5:                            Emit(UserID u, MentionId, m) 

6:            Emit(m, getMessage(t)) 

 

1: class Reducer 

2:  method Reduce(userID u, C [c1, c2, c3, …..]) 

3:   for all object c ∈ C do 

4:                            if IsObject(c) 

5:         T ← c 

6:                            else 

7:                               T.updateStatus(c) 

8:   Emit(userID u, status T) 
 

 

Figure 13.Algorithm 3: Computing relationships between Twitter users. 

 

5.1 In-Memory cache 

 
For read performance comparisons between HDFS and an in-memory cache, all 20 files are 

copied into HDFS and also loaded into the Redis cluster of 8 instances (100% cache hit ratio). 

Each tweet is stored as a key/value pair under a hash. There are total of 8 map tasks (2 tasks per 

node) and each takes a single Redis instance running in the corresponding node as its input split. 

As Table 1 and Figure 14 show, the average job completion time of a word count MapReduce job 

is reduced by 23% when using an in-memory cache. The reduction is caused by shorter map 

completion time which was reduced by 14%. Bypassing HDFS and using an in-memory cache as 

the data source substantially improves overall performance of a MapReduce job. 

 
Table 1.Comparison between HDFS and in-memory cache 

 

Data Source Map Completion Time (min) Job Completion Time (min) 

HDFS 46.53 68.23 

In-memory cache 39.64 52.53 

 

 
 

Figure 14.Average job completion time for HDFS and in-memory cache. 
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5.2 Combiner 

 
The effects of three combining design patterns are compared for three different input sizes and 

cluster sizes. The same word count MapReduce algorithm with HDFS as the source of input data 

is used for all three combining design patterns. The number of map tasks varies by the 

corresponding input data size and the number of reduce tasks is fixed at one. The job completion 

times are for one job iteration. 

 
Table 2.Results for different combining designs (R = 24M, N = 4) 

 

Method Map Output Reduce Input Job Completion Time (min) 

No combiner 144,237,557 144,237,557 66.48 

Traditional combiner 144,237,557 65,385,683 54.53 

In-mapper combiner 65,385,683 65,385,683 48.47 

In-node combiner 2,535,467 2,535,467 43.02 

 

Table 2 shows results for processing 24M records with 4 datanodes. Results indicate that all three 

combining design patterns show significant reduction in reduce input size compared to the 

uncombined. Reduce input size is reduced by more than 50% and average job completion time is 

reduced by 30% with INC. Map output size of the traditional combiner remains unchanged from 

the uncombined because traditional combiners run on emitted outputs. INC generates the 

minimum number of map output among all combining designs. Almost 90% reduction in map 

output size is observed. Figure 15 shows results for a word count job with different input sizes 

and combining design patterns. As the input data size increases, more keys are processed by each 

map task and thus more pairs with a same key are combined. With INC, average job completion 

time was reduced by almost 50% compared to the uncombined. When the number of combinable 

results is large enough, INC is the most effective choice for enhancing overall performance. 

Results show that the effectiveness of INC increases relative to the total number of distinct keys. 

 

 
Figure 15.Average job completion time VS Input size. 

 

Figure 16 shows results for a word count job processing 9 million records running with different 

cluster sizes. For all types of combining methods, increasing the cluster size improves the task 

parallelism and thus job completion time is greatly reduced. For a single node cluster, increase in 

job completion time is observed for INC due to the additional cost for maintaining connections to 

the local cache. However, INC performance enhances gradually with increase in cluster size. 40% 

enhancement in job completion time compared to the uncombined is observed with INC running 

in 4 data nodes. 
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Figure 16.Average job completion time VS Number of nodes. 

 

Unfortunately combiners do not always improve performances of all MapReduce jobs. 

Combiners should only be used for jobs with sufficient amount of combinable intermediate 

results. If the amount of intermediate pairs with a same key generated within a map task is low, 

using a combiner is unlikely to improve the performance but only adds additional execution costs. 

Table 3 shows results for running our second algorithm. Since only tweets containing mention 

tags are candidates for the algorithm, the number of distinct keys is significantly reduced 

compared to the word count algorithm. Unless messages are exactly identical to each other, each 

tweet with mention tags generates multiple intermediate pairs that are not combinable. Results 

show only 3% of total map outputs and 6% of job completion time was reduced when using 

combiners. This indicates that using combiners on MapReduce jobs with small percentage of 

combinable intermediate pairs do not have significant impact on overall performance. Combiners 

must be used carefully only on appropriate cases otherwise performance may be deteriorated. 

 
Table 3.Results for computing relational status (R = 24M, N = 4) 

 

Method Map Output Reduce Input Job Completion Time (min) 

No combiner 2,651,123 2,651,123 47.32 

Traditional combiner 2,651,123 2,618,876 45.53 

In-mapper combiner 2,618,876 2,618,876 44.47 

In-node combiner 2,570,458 2,570,458 45.02 

 

6. CONCLUSION 
 

We have shown a workflow of a common HadoopMapReduce job and described the two 

bottlenecks which primarily is caused by the poor I/O performance. Both disk and network I/O 

during all phases of a MapReduce job should be optimized for better performance. Caching entire 

input data of a job ensures a significant improvement in overall performance. Though caching 

solves the HDFS bottleneck by completely bypassing it but multiple disk and network I/O 

performed during the shuffle phase are significant performance degradation factors. The 

combiner was introduced to reduce the amount of intermediate results shuffled across the network 

by locally aggregating partial results at the map side. The in-mapper combiner improves the 

traditional combiner by reducing the number of emitted intermediate results. Our experimental 
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results showed that the job completion time was reduced by 25% using an in-mapper combiner. 

The effectiveness of IMC is relative to the total number of allocated map tasks. We proposed the 

in-node mapper which extends the scope of IMC to node level. It aims to combine all 

intermediate results within the same node by locally combining intermediate results generated 

within the same node. Our experimental result showed INC improves the job performance by up 

to 20% compared to IMC. 

 

We have modified Hadoop core to utilize in-memory cache to store intermediate results and map 

task status information. Our system allows map tasks to be aware of current status of the node it is 

running on. Using this feature, various different combining techniques can be applied to further 

optimize MapReduce jobs. 
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