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ABSTRACT 
 
      The application of multi objective model predictive control approaches is significantly limited with 
computation time associated with optimization algorithms. Metaheuristics are general purpose heuristics 
that have been successfully used  in solving difficult optimization problems in a reasonable computation 
time.  In this work , we  use  and compare  two multi objective metaheuristics, Multi-Objective Particle 
swarm Optimization, MOPSO,  and Multi-Objective Gravitational Search Algorithm, MOGSA, to generate 
a set of approximately Pareto-optimal solutions in a single run.  Two examples are  studied, a nonlinear 
system consisting of  two mobile robots  tracking trajectories and avoiding obstacles and a linear multi 
variable system. The computation times and the quality of the solution in terms of the smoothness of the 
control signals and precision of tracking show that MOPSO can be an alternative for real time 
applications. 
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1. INTRODUCTION 

 
Model based predictive control (MBPC)  is a form of control in which the current control action 
is obtained by solving on-line, at each sampling instant, a finite horizon open-loop optimal 
control problem, using the current state of the plant as the initial state and a model for predicting 
the future behavior of the plant [1]. The optimization yields an optimal control sequence and the 
first control in this sequence is applied to the plant . Usually, this strategy involves a single 
objective function to be minimized. Lately, however, multi-objective MBPC has began to attract 
interest [2][3][4][5]. For example, In [2], the authors use multi objective optimization to tune non 
linear model predictive controllers basing on a weighted sum of objective functions and in [3] 
authors showed that it is possible to compute Pareto optimal solution as an explicit piecewise 
affine function after recasting the optimization problem associated with the multi objective MPC 
as a multi parametric multi objective linear or quadratic program. However, application of multi 
objective model predictive control approaches is significantly limited with computation time 
associated with optimization algorithms. On the other hand, Metaheuristics such as genetic 
algorithms [6], particle swarm optimization [7], and gravitational search algorithm [8] are general 
purpose heuristics which have been successful in solving difficult optimization problems in a 
reasonable computation time.  Basically, most metaheuristcs have been extended to  
multiobjective optimization, we thus find for instance  the non dominated sorting genetic 
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algorithm II  (NSGA-II) [9], non-dominated sorting particle swarm optimizer for multi objective 
optimization (NSPSO) [10],   multi objective particle swarm optimization  MOPSO [11] [12],  
multi objective gravitational search algorithm (MOGSA) [13].  
 
Metaheuristics may be used in many ways in the multiple objective context. In this work we use 
multi-objective metaheuristics  to generate a set of approximately Pareto-optimal solutions in a 
single run. We present a comparison between two different multi objective metaheuristics, Multi 
Objective Particle Swarm Optimization, MOPSO, and Multi Objective Gravitational Search 
Algorithm, MOGSA, for the solution of the multi objective optimization problem arising in 
MOMPC. 
 
The paper has the following structure: Section 2 covers the multi objective optimization concepts, 
section3 gives the formulation of the Multi objective non linear model predictive control, section4 
provides the description of the MOPSO and MOGSA and section5 describes the applications of 
the above metaheuristics for the control of linear and non linear systems. 
 
2. MULTI OBJECTIVE OPTIMIZATION 
 
The problem of multi objective optimization has the following general form: 

݉݅݊௫∈ఆ{Ϝ(ݔ)}                                                              (1) 

  is the decision variable space,  Ϝ: objective functions vector:ߗ
 
 x : vector of decision variables from the decision variable space 
 

                                               Ϝ:ߗ → ܴ௞ , Ϝ(ݔ) = [ ଵ݂(ݔ), ଶ݂(ݔ), … , ௞݂(ݔ)]்                               (2) 

With                                 ൜
݃௜(ݔ) ≤ 0						݅ = 1,2, … ,݉
ℎ௝(ݔ) = 0						݆ = 1,2, … ݌,                                                          (3) 

And k is the number of the objective functions, ௜݂:ܴ௡ → ܴ, with ݔ = ,ଵݔ] ,ଶݔ … ,  ௡]். Theݔ
solution of this problem is noted ݔ∗ = ,∗ଵݔ] ∗ଶݔ , … ,  ்[∗௡ݔ
 
Definition1: Given 	ݔ, 	ݕ ∈ ݔ x is said to dominate y, or ,ߗ ≺  :if and only if ݕ
 ௜݂(ݔ) ≤ ௜݂(ݕ)  i=1…n and Ϝ(ݔ) ≠ Ϝ(ݕ),  
 
Definition2:  ݔ∗ ∈  is a Pareto optimal if and only if there does not exist another decision ߗ
vector 	ݕ	 ∈ ݕ such that ߗ ≺  ∗ݔ
 
Definition3: Set of Pareto optimal solutions is defined as:  

ܨܲ = ݔ} ∈  {	݊݋݅ݐ݈݋ݏ	݈ܽ݉݅ݐ݌݋	݋ݐ݁ݎܽܲ	ܽ	ݏ݅	ݔ|ߗ
 
3. FORMULATION OF THE MULTI OBJECTIVE NON LINEAR MODEL    
PREDICTIVE CONTROL 
 
Consider a non linear system described by the discrete state space model: 

݇)ݔ + 1) = ݂൫ݑ,(݇)ݔ(݇)൯                        (4) 
 

Where    x(k) is the state , u(k) the control signal and  ݂ is a continuous mapping. 
    The control signal  ݑ(݇) is such that : 

(݇)ݑ ∈ ܷ ⊂ ℝ௠        (5) 
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U   is a compact convex set with	0 ∈ int(U)  and f(0,0) =0.  The state may be constrained to stay 
into a convex and closed set:   ݔ(݇) ∈ ॿ       
 
 The problem is to regulate the state to the origin by solving the following optimization problem: 
 

࣯݉݅݊ ,ݔ)ேܬ ݇,ܷ)  																						            (6) 
 

Where 
,ݔ)ேܬ ݇,ܷ) = ݇)ݔ൫ܨ + ܰ)൯+ ∑ ,(݅)ݔ൫ܮ ൯௞ାேିଵ(݅)ݑ

௜ୀ௞                     (7) 
 

In multi objective model predictive control, we consider the optimization of criteria using multi 
objective optimization approaches: 
 

࣯݉݅݊ 			 ,ܷ)଴ܬ] ,(ݔ ,ܷ)ଵܬ ,(ݔ … , ,ܷ)௟ܬ ᇱ:ܴௌ[(ݔ × ܴ௡ → ܴ௟ାଵ                   (8) 
Subject to:  

݇)ݔ + 1) = ݂൫ݑ,(݇)ݔ(݇)൯                       (9) 
(݇)ݔ ∈ ॿ	, ݇ = 1, … ,ܰ                  (10) 

(݇)ݑ                                                ∈ ܷ, ݇ = 0, … ,ܰ − 1      (11) 
݇)ݔ + ܰ) ∈  (12)          ߗ

 

where:	 
 

ݏ = ܰ ∗݉, ଴ᇱݑ]ܷ , … ேିଵᇱݑ, ] is the sequence of future control moves to be optimized. 
 

The problem of multi objective model predictive control is to minimize, at each sampling time, 
the l following functions cost: 
 

,ܷ)௜ܬ (ݔ = ݇)ݔ௜൫ܨ +ܰ)൯+ ∑ ݅	ℎݐ݅ݓ			((݆)ݑ,(݆)ݔ)௜ܮ = 0, … , ݈௞ାேିଵ
௞ୀ௝       (13) 

 

݇)ݔ௜൫ܨ + ܰ)൯	is a weight on the final state. Moreover, the final state may be constrained to be in 
a final region ݔ(݇ + ܰ) ∈ ௙ܺ ⊂ ܺ    
 
The weight F୧ and the final region are introduced to guarantee stability of the non linear MPC. 
 
The solution gives the set of Pareto front and only one Pareto optimal solution is selected and 
applied at sampling instant k. The procedure is repeated at each sampling time.   
 
4. META HEURISTICS FOR MULTI OBJECTIVE OPTIMIZATION 
 
The ultimate objective in multi objective optimization is the identification of the Pareto optimal 
which contains the non dominated solutions. In the last decade, researches were oriented towards 
extending metaheuristic such as particle swarm optimization, PSO, ant colony optimization, 
ACO, gravitational search algorithm, GSA, and other, to the solution of multi objective 
optimization problems.  In this section, we introduce the two metaheuristics studied in this work. 
 
4.1. The MOPSO: 
 
Particle swarm optimization is an evolutionary computation technique developed by Kennedy and 
Eberhart in 1995 [7]. The particle swarm concept originated as a simulation of a simplified social 
system. The success of the particle swarm optimization algorithm motivated the researchers to 
apply it to multi-objective optimization problems. The MOPSO [10] is one of the algorithms 
proposed to solve the multi objective optimization problem using particle swarm optimization 
algorithm. The MOPSO maintains two archives, one for storing the globally non-dominated 
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solutions and the other for storing the individual best solutions attained by each particle.  
Basically, the updating of the particle is performed as follows: 

ݐ)ܸ + 1) = ݓ ∗ (ݐ)ܸ + ܴଵ ∗ ൫݌௕௘௦௧(ݐ)− ൯(ݐ)݌ + ܴଶ ∗ −(ℎ)݌ܴ݁)  (14)     ((ݐ)݌
 

ݐ)݌ + 1) = (ݐ)݌ + ݐ)ܸ + 1)                                                        (15) 
 
Where  ܸ	 is the particle velocity, p(t) is the curent position of the particle, 	ݓ  is a constant , ܴଵ 
and ܴଶ are random numbers in [0 1]. REP is a repository where are stored the positions of the non 
dominated particles and h is an index in the repository that is introduced to ensure some fitness 
sharing [10]. Pbest(t) is the best solution found by the particle. REP  is updated by inserting  the 
currently nondominated positions and  dominated positions  are eliminated.  The size of the 
repository being limited when it becomes full and particles in less populated areas are given 
priority over those highly populated regions. 
 
4.2. The MOGSA: 
 
In the gravitational search algorithm, GSA, [8] objects attract each other by the force of gravity 
which causes a global movement of all objects towards the objects with heavier masses. Hence, 
masses cooperate using a direct form of communication, through gravitational force. The heavy 
masses, corresponding to good solutions, move more slowly than lighter ones. In GSA, each mass 
has four specifications: position, inertial mass, active gravitational mass, and passive gravitational 
mass. The position of the mass corresponds to a solution of the problem, and its gravitational and 
inertial masses are determined using a fitness function. The algorithm is evolves by properly 
adjusting the gravitational and inertia masses.  Eventually, masses will be attracted by the 
heaviest mass which presents an optimum solution in the search space.  
 
More specifically, if there are N objects in the solution set with positions  xi, i=1…N. At iteration 
t, the mass of each object is given by: 
 

(ݐ)௜ܯ = ௠೔(௧)
∑ ௠ೕ(௧)ಿ
ೕసభ

                                  (16) 

with  
݉௜(ݐ) = ௙௜௧௡௘௦௦೔(௧)ି௪௦௧(௧)

௕௦௧(௧)ି௪௦௧(௧)
              (17) 

fitnessi(t) is the value of the cost function (fitness) of object i while bst(t) and wst(t) are 
respectively the best and worst values of fitness of all objects.  Let  Kbest be the set of k objects 
with the best fitness values, then the total force acting on a given object originates from heavier 
objects and is given by: 
 

(ݐ)௜ܨ = ∑ ݊ܽݎ ௝݀௝∈௄௕௘௦௧ (ݐ)ܩ
ெೕ(௧)ெ೔(௧)

஽೔ೕ(௧)ାఌ
(ݐ)௝ݔ) −  (18)                       ((ݐ)௜ݔ

 
with ݊ܽݎ ௝݀ 	 ∈ [0, 1] is a random number, G(t) is the gravitational constant, Dij(t) is the Euclidean 
distance between objects i and j and a small number.  The gravitational constant given by: 
 

(ݐ)ܩ =  ଴݁ିఈ௧/௧௠௔௫                   (19)ܩ

G0 is the initial value, α is a constant, tmax the maximum number of iterations. 
The acceleration of object i at iteration t is then given by: 
 

ܽ௜ = ி೔(௧)
ெ೔(௧)

              (20) 
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Position xi(t) and velocity vi(t) of the object at iteration t are given by: 
 

(ݐ)௜ݒ = (ݐ)௜ݒ௜݀݊ܽݎ + ܽ௜(ݐ)                (21) 

(ݐ)௜ݔ = (ݐ)௜ݔ + ݐ)௜ݒ + 1)                         (22) 

The MOGSA presented in[13] is a multi objective optimization algorithm which classifies the 
population into different Pareto fronts, ranking individuals by using the Pareto front and the 
crowding distance concept from the NSGA-II.  In order to calculate the multi-objective cost ( 
fitness),  it applies a linear bias br to the rth ranked element by using the expression: br =1/r, 
obtaining values from 1 to 1/N. Thus, a sorted population with a single fitness value is obtained.  
 
5. APPLICATION 
 
5.1. Example01  
 
Consider four robots each of which has two wheels, two real and two virtual. The real robots 
track the virtual ones. It is assumed that there is a pure rolling. The kinematic model of the real 
robots is given by: 
 

(ݐ)ప̇ݔ = ௩ೝ೔(௧)ା௩೗೔(௧)
ଶ

 (23)                                     (ݐ)௜ߠ	ݏ݋ܿ	

(ݐ)ప̇ݕ = ௩ೝ೔(௧)ା௩೗೔(௧)
ଶ

 (24)                                    (ݐ)௜ߠ	݊݅ݏ	

(ݐ)ప̇ߠ = ௩ೝ೔(௧)ି௩೗೔(௧)
௕

                                                    (25) 

Where i=1, 2, ݒ௥௜ ∈ ܴ and ݒ௟௜ ∈ ܴ  are t he right and left linear velocities of the wheels of the real 
robot i, b ∈ R is the distance between the wheel centers. ߠ௜ 	 is the robot orientation  and  ߱௜ are 
the angular velocities. 
 

The objective is to find a control law defined by 	ݒ௥௜(ݐ)	, ݒ௟௜(ݐ) (i=1, 2)  that allows the robots to: 
 

-  track  given reference trajectories defined by:[ݔ௥௜(ݐ)	ݕ௥௜(ݐ)], ݅ = 1,2 , respectively 
- Avoid  fixed obstacles on the trajectories 
- Avoid collision between them. 

 

This problem is set as a multi-objective model predictive control with constraints that will solved 
using the above meta heuristics, MOPSO and MOGSA. Obstacle avoidance is ensured by adding 
a constraint to the MBPC problem: if the distance between the obstacle and the robot is less than 
a given value r then a penalty is added to the cost function. The same idea is used to avoid the 
collision between robots. The first reference trajectory is given by:   
 
(ݐ)௥ଵݔ = cos(߱଴ݐ) ; (ݐ)௥ଵݕ = sin(2 ∗ ߱଴ݐ)  ;    ߱0=0.02 rad/s  is the signal pulsation,   the second 
reference trajectory is given by:   ݔ௥ଶ(ݐ) = cos(߱଴ݐ +߮) ; (ݐ)௥ଶݕ	 = sin(2 ∗ ߱଴ݐ + ߮)  ;        
The control signals are constrained to: −0.7(݉/ݏ	) ≤ ௥௜ݒ ≤  and ;(ݏ/݉) 0.7
(ݏ/݉)0.7−  ≤ ௟௜ݒ ≤  .The sampling time is T=0.1second .  (ݏ/݉	)0.7
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Figure 1. ROBOT1 trajectory 
 

 

Figure 2. Control signals for ROBOT1 
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Figure 3. ROBOT2 trajectory 

 

Figure 4 . Control signals for ROBOT2 
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the robots is m(0,0).  Robots start from their initial positions (0.25, 0), (-0.75, 0)  and track their 
own trajectories, each one avoids the first fixed obstacle and continues its traveling to the 
collision point. It is observed that the second robot continues its tracking and the first avoids it by 
decreasing its velocities to keep a good safe distance. Then, robots continue their tracking and 
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Computation times are given in table 1, where it can be seen that MOPSO-NMPC out performs 
the other algorithm MOGSA-NMPC which produce a similar tracking and avoiding  but with a 
longer run time. The constraints on the control signals are always satisfied as shown in figure (2) 
and (4). All the computation times are performed on  Intel®  I3, 2120 CPU 3.30 GHz with  4Go 
RAM. 

Table 1. Computation time for the first example 
 

 

 
 

 
5.2. Example02 
 
In this second example we consider a multivariable system taken from [2]:  
 

݇)ݔ + 1) = (݇)ݔܣ +  	(݇)ݑܤ
 

ܣ = ൥
1.3433 0.1282 0
−0.1282 1.2151 0
0.1282 0.0063 1.2214

൩ ; ܤ	 = ൥
0.1164 0.0059
−0.0059 0.1105
0.1166 −0.1105

൩                   (26) 

(݇)ݔ ∈ ܴଷ , (݇)ݑ ∈ ܴଶ.  
 
  As given in [2] the problem consists in minimizing three quadratic performance indexes (i=3); 
 

min
௨
൜	ܬ௜൫ܷ, ൯(ݐ)ݔ = ݔ

௧ାಿ೟

்
௜ܲݔ௧ାಿ೟

+ ∑ ݔ
௧ାೖ೟

் ܳ௜ݔ௧ାೖ೟
+ ௧ା௞்ݑ ܴ௜ݑ௧ା௞ேିଵ

௞ୀ଴ 			ൠ          (27) 

In order to ensure stability,  the final cost matrix  Pi is calculated from the algebraic Riccati 
equation with the assumption that the constraints are not active for k≥ N . The weight matrices are 
[2]: 

ܳ1 = ൥
3 0 0
0 0 0
0 0 0

൩; ܳ2 = ൥
0 0 0
0 2 0
0 0 0

൩; ܳ3 = ൥
0 0 0
0 0 0
0 0 1

൩                             (28) 

ܴ1 = ܴ2 = ܴ3 =  2ܫ
 

(0)ݔ = [2				2		 − 1]′ 
 
The task is to regulate the system to the origin. To this aim, we design a controller based on the 
multi objective optimization problem, using MOPSO then MOGSA.  

 MOPSO-NMPC MOGSA-NMPC 

Computation time  ≤ 9ms ≤ 190ms 
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Figure 5. Control signals for example2, MOPSO and MOGSA 

 

Figure 6. State variables for Example 2 
 
It can be seen, from the results of the simulation shown in figure 5 and figure 6, that the control 
signals and the states are quite similar for both algorithms. The system is stabilized in about 40 
iterations while satisfying the constraints. Again, these results are very similar to those obtained 
in [2] using a receding horizon approach to the multi objective control problem. Table 2 gives the 
computational time where one can see that the MOPSO algorithm is the fastest.  
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Table  2. Computation time for the second example  
 

 MOPSO-MPC MOGSA-MPC 

Computation time ≤ 4ms ≤ 200ms 

 
5.   CONCLUSION 
 
In this work, we  compared the use of  two multi objective metaheuristics, MOPSO and MOGSA, 
to generate a set of approximately Pareto-optimal solutions in a single run.  Two examples were  
studied, a nonlinear system consisting of  two mobile robots  tracking trajectories and avoiding 
obstacles and a linear multi variable system. The computation times and the quality of the 
solution in terms of the smoothness of the control signals and precision of tracking show that 
MOPSO can be an alternative for real time applications. 
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