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ABSTRACT

In this paper, we will focus on the Spatial Gray Level Dependence Matrices SGLDM to extract the
Haralick’s texture features of the ultrasound breast lesions. This method relies on the manual selection of
the region of interest, which results in the dependence of parameters values on the extracted region. For
that reason, an improved Spatial Gray Level Dependence Matrices based on the segmented masses using
active contour was applied. This method outperforms the existing SGLDM method because it allows
establishing a well determined threshold for the classification of lesions.
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1. INTRODUCTION

Texture analysis is an essential issue in image processing. It comprises a set of mathematical
techniques used to quantify the different gray levels within an image in terms of intensity and
distribution.

Texture represents the spatial arrangement of pixels’ gray levels in a region. So, it can be divided
into two classes: periodic texture and random texture. Consequently, we can distinguish the
structural approaches and the statistic approaches to calculate a number of mathematical
parameters that characterize the texture. Structural approaches are more suited to the study
of periodic or regular textures. However, statistic approaches are used to characterize fine and
non homogeneous structures without apparent regularity. That is why; this type of method is
generally applied in medical imaging.

Numerous methods belonging to statistic approaches have been proposed in the literature. Indeed,
we can mention the First Order Methods (FOM) [1], the Spatial Gray Level Dependence Matrices
(SGLDM) [2, 3], the Gray Level Difference Methods (GLDM) [4], the Gray Level Run Length
Statistics (RUNL) [5], the Fourier Power Spectrum (FPS) [4], the Fractal Dimension Texture
Analysis (FDTA) [6], the Surrounding Region Dependence Method (SRDM) [7], and the
Histogram Measures (HM) [8].
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Texture can be used in many application areas, such as image segmentation [9], object
recognition [10], or classification [11]. Moreover, the texture of image plays an important role in
the differentiation of ultrasound breast lesion during the diagnosis because echogenicity and
echostructure are essential parameters for the evaluation of lesions. So that, textural variation in
the ultrasound image has been found as a useful feature to identify benign and malignant tumors.
Nevertheless, according to the subjective observations and individual experiences, radiologists
may qualitatively attribute the texture characteristics differently. That is why; texture analysis is
needed to describe texture quantitatively. So, the subjective variation will be eliminated and the
analysis of image texture can be facilitated.

Chen et al. [12] demonstrate that the application of the feature parameters derived from the co-
occurrence matrix to quantify the texture of ultrasound images is useful in the differentiation of
various breast lesions. Sivaramakrishnaa et al. [10] investigate the use of Haralick’s texture
features [2] through SGLDM and posterior acoustic attenuation descriptors for the
characterization of ultrasound breast lesions. Bader et al. [13] applied the first order texture, the
gray level histogram, the Fourier analysis, and the co-occurrence matrix to evaluate breast
tumors.

In this study, we will focus on the SGLDM method to extract the Haralick’s texture features of
the ultrasound breast lesions. This method relies on the manual selection of the region of interest
ROI, which results in the dependence of parameters values on the extracted region.
For that reason, an improved SGLDM method based on the segmented masses using active
contour method [14] was applied.

This paper is arranged as follows: In section2, we describe our data base. Next, we present the
SGLDM method as well as the textural parameter, and we explain the improved SGLDM method.
Section 3 presents the experimental results and the discussion. Finally, Section 4 concludes the
paper.

2. MATERIALS AND METHODS

2.1. Data base acquisition

In this study, a total of 50 cases of breast ultrasound lesions were acquired by an ultrasound
system Toshiba and a linear array transducer with variable frequency from 5 to 12 MHz. They
were all proved by pathologic results to be either benign or malignant soft-tissue tumors. We
distinguish 31 benign lesions and 19 malignant lesions. The patients were all female with the ages
ranging from 23 to 68 years old.

2.2. Spatial gray level dependence matrices (SGLDM)

SGLDM is a statistical method which consists in constructing co-occurrence matrices to reflect
the spatial distribution of gray levels in the region of interest. SGLDM is based on the estimation
of the second order conditional probability density g(i,j,d, Ө ). This means that an element at
location (i, j) of the SGLD matrix signifies the probability that two different resolution cells
which are in a specified orientation Ө from the horizontal and specified distance d from each
other, will have gray level values i and j respectively.

The angle is used to evaluate the direction of texture, and the application of several distance
values can provide a meaningful description of the size of the periodicity texture. Thus for
different Ө and d values, different SGLD matrices result. The angle Ө is usually restricted to
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values of 0, 45, 90, and 135°, and the distance d is limited to values restricted to integral multiples
of pixel size.

Figure 1 shows how calculate SGLD matrix with Ө =0 and d=1. Element (2, 1) in the SGLDM
contains the value 2 because there are two instances in the image where two horizontally adjacent
pixels have the values 2 and 1. Element (4, 1) in the SGLDM contains the value 1 because there is
only one instance in the image where two horizontally adjacent pixels have the values 4 and 1.

The size of the SGLD matrix is Ng* Ng, where Ng is the maximum gray level of the region of
interest.

Figure 1. Construction principle of co-occurrence matrix

Different parameter of texture reflects different property in the image. Haralick et al. proposed a
large number of features called Haralick’s texture features [2] derived from the co-occurrence
matrix. We will focus on and discuss contrast, homogeneity, energy, entropy, mean, and variance,
in this study. These parameters are briefly described as follows [3, 15]:

- Contrast: It is a measure of the local variations of gray levels present in an image. Images with
large neighboring gray level differences are associated with high contrast. This parameter can
also characterize the dispersion of the matrix values from its main diagonal. Contrast is defined as
follows:

∑∑ −=
i j

jigjicont ),()( 2 (1)

Where g(i, j) corresponds to the elements of co-occurrence matrix, ie the probability of moving
from a pixel with gray level i to a pixel with gray level j.

- Homogeneity: This parameter, called also Inverse Difference Moment, measures the local
homogeneity of an image. It assigns larger values to smaller gray level differences within pixel
pairs. This parameter has opposite behavior of the contrast. More the texture has homogeneous
regions, more the parameter is high. Homogeneity is written as:
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- Energy:  This parameter is a measure of image homogeneity; it reflects pixel-pair repetitions.
Homogeneous images have very few dominant gray tone transitions, which result into higher
energy. Energy is defined as follows:

∑=
ji

jigener
,

2)),(( (3)

- Entropy: The feature entropy is a measure of non-uniformity in the image or region of interest.
If the image is heterogeneous, many elements on the co-occurrence matrix have small values,
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Initial image Co-occurrence matrix (d=1, Ө =0°)
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which imply that entropy is very large. Entropy is inversely correlated to energy, it is given by the
following expression:

∑∑−=
i j

jigjigent )),(log(),( (4)

- Mean: The mean is determined by the homogenous brightness or darkness of the image. The
more homogeneously bright the image is, the higher is its mean, and vice versa. The mean is
written as:

∑∑=
i j

jigmean ),( (5)

- Variance:  It is a measurement of heterogeneity and was correlated strongly with standard
deviation. It characterizes the distribution of gray levels around the mean value calculated above.
Therefore, variance increased when the gray levels values differed from their means. The
expression of the variance is:

∑∑ −=
i j

jigmeani ),()(var 2 (6)

2.3. Improved spatial gray level dependence matrices

In the literature, authors selected manually a rectangle region of interest inside or outside the solid
mass to calculate textural features derived from SGLDM method [10], [12], [13]. In both cases
this poses a problem. In fact, if the rectangle is inside the solid mass, it should be as large as
possible to include the most of mass. In this case we can lose information that may be useful in
calculating the parameters (figure 2a). However, if the rectangle is outside the solid mass,
unnecessary information included in the calculation of features (figure 2b).

Furthermore, the selection of the rectangle region of interest is operator dependant. Figure 3
shows two possibilities of selecting this rectangle which leads to different results.

Figure 2. Two possibilities of selecting region of interest
(a) Selected rectangle inside the ROI, (b) Selected rectangle outside the ROI

(a) (b)
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Figure 3. Two possibilities of selecting rectangle inside the region of interest
(a) Possibility 1, (b) Possibility 2

All these disadvantages can affect the precision in computing textural features. So, to achieve
more accuracy, texture analysis should be ideally invariant. This paper attempts to fill this gap by
presenting an improved SGLDM method based on the whole segmented lesion. The segmentation
of breast masses was carried out automatically using active contour method [14].

In fact active contour, originally introduced by Kass et al. [16], has been extensively applied in
breast ultrasound images’ segmentation [14, 17-19] because of its concept of coupling the image
data with shape control. It is based on deforming an initial curve towards the region of interest to
be detected. An energy function could be associated with the curve, so the problem of finding an
object boundary could be cast as an energy minimization process. Typically, curves could be
affected by both an internal energy and an external energy as shown by the following equation:

∫ +=
1

0
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Eint represents the internal energy coming from the curve itself. However, Eext denotes the external
energy computed from the image data.

Figure 4, shows an example of segmented ultrasound breast lesion (figure 4a), and the extracted
region of interest (figure 4b) used to compute the improved SGLDM.

The key idea of our improved SGLDM is as follows: First, we calculate the co-occurrence matrix
of the image shown in figure 4b, that is to say, with Ng=256. After that, we eliminate the rows
and columns of the co-occurrence matrix corresponding to all gray level values comprised
between 255 and the maximum gray level value present in the region of interest. Thus, we obtain
the improved co-occurrence matrix that corresponds to the whole lesion.

Figure 4. Example of segmented ultrasound breast image
(a) Contour of the lesion, (b) Extraction of the region of interest

(a) (b)
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3. RESULTS AND DISCUSSION

Six Haralick’s descriptors for SGLD matrix computation were calculated for both benign and
malignant lesions in this study. For that raison, a displacement vector of d = 1 is set in this
analysis in order to preserve the complexity of spatial relationships. In addition, to eliminate the
attenuation effect during the ultrasound transmittance and reflection, the final choice for the
orientation was Ө = 0°.

We start first by demonstrating that the selection of the region of interest is operator dependant. In
fact, for the 50 breast ultrasound lesions, two rectangle region of interest were selected by two
practitioners differently, as well as a region of interest was extracted on the basis on the
segmentation using active contour method. In each case, we calculated the values relating to the
contrast (figure 5), homogeneity (figure 6), energy (figure 7), entropy (figure 8), mean (figure 9),
and variance (figure 10).

(a) (b)

Figure 5. Contrast values for three ROI of
(a) benign lesions and (b) malignant lesions

Figure 6. Homogeneity values for three ROI of
(a) benign lesions and (b) malignant lesions

(b)(a)
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Figure 7. Energy values for three ROI of
(a) benign lesions and (b) malignant lesions

Figure 8. Entropy values for three ROI of
(a) benign lesions and (b) malignant lesions

Figure 9. Mean values for three ROI of
(a) benign lesions and (b) malignant lesions

(a) (b)

(a)

(a)

(b)

(b)
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Figure 10. Variance values for three ROI of
(a) benign lesions and (b) malignant lesions

By examining the obtained results, we can see clearly that, for each parameter, the values
extracted from each region are variable for the same lesion. This remarkable disparity is due to
the variation of the selected region of interest, except for a few cases where the lesion has a very
regular shape. This plainly proves that the calculation of textural features depends strongly
on the operator, and subsequently affects the results precision. It is for this reason that we
tried to make it ideally invariant by applying segmentation method.

Table 1. Values of six texture parameters of benign and malignant tumors for three regions of interest

Histology mean sd min max
cont B1 32.7596 22.2426 5.0102 91.9111

B2 36.8975 31.0595 4.5071 110.2816

B3 17.7657 10.8122 4.5147 54.8710

M1 24.5461 14.5755 3.5702 51.5795

M2 29.1559 17.1735 3.7686 58.5415

M3 21.8610 14.0358 5.3344 53.3374

hom B1 0.3708 0.0909 0.2059 0.5342

B2 0.3771 0.0902 0.2246 0.5490

B3 0.3687 0.0839 0.2153 0.5248

M1 0.5136 0.2260 0.2024 0.8860

M2 0.5169 0.2177 0.2108 0.8561

M3 0.4730 0.1928 0.2281 0.8010

ener B1 0.0024 0.0015 0.0006 0.006

B2 0.0025 0.0017 0.0007 0.0075

B3 0.0018 0.0011 0.0005 0.004

M1 0.0616 0.0660 0.0042 0.191

M2 0.0578 0.0549 0.0084 0.159

M3 0.0354 0.0326 0.0071 0.114

ent B1 0.3433 0.2364 0.0801 0.8324

B2 0.3570 0.2177 0.0623 0.8357

B3 0.4365 0.1958 0.13 0.7309

M1 0.5094 0.2519 0.0637 0.9411

M2 0.4434 0.2613 0.05 0.9006

M3 0.4951 0.1578 0.2641 0.7603

mean B1 7096.0682 4.2743e+003 450 26600

B2 6808.8986 4.0062e+003 508 27030

(b)(a)
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B3 9731.9537 9.0859e+003 1350 34258

M1 12988.57 11373.17 1575 51660

M2 12907.57 12193.37 1704 54943

M3 25329.05 481252 3795 68300

var B1 1159.84e+08 1300.14e+08 155.14e+08 4778e+08

B2 1523.98e+08 1730.47e+08 168.23e+08 6809e+08

B3 2149.32e+08 1768.08e+08 275.89e+08 6100e+08

M1 3099.97e+09 3801.01e+09 325.688e+009 13958e+09

M2 2828.39e+09 3460.88e+09 301.257e+009 14576e+09

M3 8437.64e+09 5304.77e+09 853.568e+010 15807e+09

sd = standard deviation value, min = minimum, max = maximum, B1 = first region of interest of
benign lesion, B2 = second region of interest of benign lesion, B3 = segmented region of interest
of benign lesion, M1 = first region of interest of malignant lesion, M2 = second region of interest
of malignant lesion, M3 = segmented region of interest of malignant lesion

In order to generalize our results, we present in Table1 the mean, standard deviation, minimum,
and maximum values of texture parameters computed from the three region of interest of all
benign and malignant lesions.

By comparing the values of Table 1 for each parameter, we notice the difference in the mean,
standard variation, minimum and maximum values between the three regions of interest either in
the case of benign or malignant lesions. This difference may influence the diagnosis because we
cannot establish a well determined threshold for the classification of lesions.

We can so note the importance of our improved SGLDM method especially in the differentiation
between lesions. Consequently, this method allows improving radiologist’s accuracy in
distinguishing benign from malignant breast masses. As well as, this method can be integrated in
the process of the computer aided diagnosis as a texture feature allowing thus the classification of
the breast ultrasound lesions in an automated manner.

4. CONCLUSIONS

In this paper we presented an improved SGLDM method to extract textural feature based on the
whole segmented lesion using active contour method. According to the experimental results, we
showed that our method outperforms the existing SGLDM method, which is operator dependant,
in terms of accuracy in calculating textural features. Consequently, we may determine a definite
threshold necessary for classification, and we can subsequently improve breast diagnosis for
distinguishing benign from malignant breast masses.
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