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ABSTRACT 

 
Reliable and accurate estimation of software has always been a matter of concern for industry and 

academia. Numerous estimation models have been proposed by researchers, but no model is suitable for all 

types of datasets and environments. Since the motive of estimation model is to minimize the gap between 

actual and estimated effort, the effort estimation process can be viewed as an optimization problem to tune 

the parameters. In this paper, evolutionary computing techniques, including, Bee colony optimization, 

Particle swarm optimization and Ant colony optimization have been employed to tune the parameters of 

COCOMO Model. The performance of these techniques has been analysed by established performance 

measure. The results obtained have been validated by using data of Interactive voice response (IVR) 

projects. Evolutionary techniques have been found to be more accurate than existing estimation models. 
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1. INTRODUCTION 
 
Software effort estimation (SEE) is the task of estimating the needed effort to develop a software. 
Complexity in estimating software development effort has been always attention area for 
researchers [2, 24]. Overestimation of effort may result in problems in project scheduling and 
faulty software, whereas underestimation of the effort may result in over budgeting and delayed 
delivery of system [21]. 
 
Various methods including, algorithmic models, namely COCOMO [18], expert judgement [19, 
20] have been employed for developing SEE models. In recent years, machine learning (ML) 
techniques such as neural networks [3, 26] bagging predictors [6] and support vector regression 
(SVR) [10, 25] have been investigated to develop SEE models. Some researchers [14, 15] have 
considered ML based method as a major category of SEE methods. Machine Learning (ML) 
techniques learn and use the knowledge from the historical project to estimate the effort. Due to 
the extensive coverage of solution space, ML techniques have contributed to the software effort 
estimation models [7]. 
 
Evolutionary computing gets inspiration from natural biological evolution and adaptation. In 
recent years, evolutionary computing algorithms have been used in software effort estimation by 
various researchers [5, 8, 17, 22, 29, 30]. Although numerous models have been proposed still no 
model has been found to be highly accurate or efficient approach in all the environments. Since 
identification of an estimation method based upon historical data is viewed as a problem to 
minimize the difference between the actual and predicted effort. Thus, it can be seen as an 
optimization problem and evolutionary based approaches can be employed to solve this problem. 
In SEE optimization problem, the given evaluation criterion (usually a measure of predictive 
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performance) is globally optimized [16]. In this article, optimization techniques, including, bee 
colony, particle swarm and ant colony have been employed to estimate the software effort. 
The remainder paper is structured in five sections. The next section discusses the related research 
work. In third section, techniques used for optimization namely Particle Swarm Optimization, Ant 
Colony Optimization and Bee Colony Optimization are presented. Fourth section elaborates 
model experimentation and data set used for validation of the models. In fifth section, results are 
presented and compared with COCOMO model. Last section concludes the paper and provides 
the scope for future work. 
 

2. RELATED WORK 
 

EC based optimization algorithms motivated from nature have gained attention of researchers for 
generating more accurate estimates. In SEE research, various EC based algorithms have been 
employed and validated by researchers to formulate an estimation model for predicting the effort. 
Genetic Algorithms (GAs) have been hybridized with other approaches aiming to improve some 
existing model based techniques [16, 18, 31]. Aljahdali and Sheta [1] have developed a model 
based upon differential evolution COCOMO-DE and the performance of the developed model 
was tested on NASA software project dataset. The proposed model was able to provide good 
estimation capabilities. Chalotra et al. [8] have implemented Bee Colony Optimization (BCO), a 
meta-heuristic way to optimize the parameters of COCOMO. The results obtained show that the 
proposed BCO based model is able to improve the accuracy of cost estimation and also 
outperform other models. Chen and Zhang [9] have proposed an approach based on an event-
based scheduler (EBS) and ant colony optimization (ACO) algorithm which enables the 
modelling of resource conflict and task preemption. Dewan and Sehra [11] have utilized ACO to 
optimize the parameters of the organic mode of Basic COCOMO model using ACO technique 
and have concluded that the proposed model was able to perform better than the COCOMO 
model. PSO has been implemented by [4, 22, 28] for modification of the COCOMO parameters 
and it has been concluded that the resultant techniques increase the accuracy of model and 
flexibility related to the software. 
 

3. METHODOLOGY 
 

3.1 Particle Swarm Optimization 
 

Kennedy and Eberhart [23] proposed PSO algorithm being inspired by the birds’social behaviour. 
PSO is based on stochastic optimization technique, inspired from flocking birds and fish 
schooling. The algorithm is based upon the concept that particles of a swarm calculate their 
position based on fitness function from the problem space in which they move. The fitness 
function is specified on the basis of the problem to be optimized and is referred as f(Xi), short for 
f(Xi.O),. ..... ,f(Xi. d), in which i is the particle, and d is number of dimensions to be optimized. 
In this algorithm, all the particles are completely connected, sharing the information about the 
best position. Position and velocity of each particle are calculated by equations 1 and 2 as 
follows: 
                     Xi,d(it + 1) = Xi,d(it) + Vi,d(it + 1)      … (1) 
                        Vi,d(it + 1) = Vi,d(it) + C1 ∗ Rnd(0, l) ∗ [pbi,d(it) − Xi,d(it)] + C2 ∗ Rnd(0, l) ∗    

                        [gbd(it) − Xi,d(it)]                                                                                 …(2) 
 
Where i is particle id; d represents dimension being considered; it is iteration number; Xi,d is 
particle i’s position; Vi,d is particle i’s velocity; Cl  and C2 are acceleration constants; Rnd is a 
random value; pbi,d is the particle best location; and gbd  is the global best location. 
 
 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 2, April 2017 

125 

3.2 Ant Colony Optimization 

 
ACO algorithm was introduced by Dorigo and Blum [13]. Observation of ant colonies has 
inspired development of this algorithm. Ants’ foraging behaviour is the basis of the algorithm, i.e. 
how shortest paths are searched by ants between food sources and their nests. Initially, ants 
initially search the surrounding area in a random manner. During this, a chemical pheromone trail 
is left on the ground by the ants. When ants choose the path, they choose the paths which have 
been marked with strong concentrations of pheromone. As soon as it finds a food source, it 
evaluates the quantity and quality of food while taking back some of the food. The pheromone 
trails during the return trip guides other ants to find the food source. Thus, shortest paths between 
nest and food source are identified based upon trail left on ground. 
 

3.3. Bee Colony Optimization 

 
The Bee Colony Optimization (BCO) is a perfect example of swarm intelligence [27]. The BCO 
approach is a “bottom up” modelling approach creating artificial agents analogous to bees. 
Artificial bee agents collaboratively solve complex combinatorial optimization problem. BCO is a 
meta-heuristic algorithm which uses the swarm behaviour of bees and collective intelligence to 
deal with combinatorial problems [12]. Bee Algorithm is used for finding the best possible 
solutions for optimization problems. Artificial bees are responsible for solving problems. Bee 
algorithm consists of two types of alternating pass that contribute in a single step, forward pass 
and backward pass. Both passes are problem dependent. During forward pass every bee is 
assigned with an empty solution. All bees explore the search space on an individual basis for 
number of predefined moves. Partial/complete solutions are computed by every bee. This 
evaluation depends on individual exploration and past experience. After that bees go back to hive 
or colony and start the second phase of first step i.e. backward pass. During this all bees 
participate in the decision making process and all evaluated solutions are shared by every bee by 
performing waggle dance which is in the shape of digit ‘8’. The solutions vary from bee to bee. 
This is the only time when bees communicate with one another and the best among all solution is 
considered as a partial/complete solution of a problem. Only those solutions will be loyal that will 
be giving best solutions. Equation 3 is used for selecting the best solution: 
 

                                
maximum value - current value

Loyalty = 
maximum value - minimum value

                                      …… (3) 

 
 Where, max value is the maximum value from set of solutions, min value is the minimum value 
from set of solutions, and current value is the value for current solution. Loyalty will be checked 
for every bee solution within a single move then from those set of solutions above mentioned 
value will be taken. 
 

4. MODEL EXPERIMENTATION 

 
One of the foremost problems that arises in software development industry is to estimate the 
effort. Large number of models is available but very few reach the level of satisfaction. 
COCOMO Model is a very famous model that gives a level of satisfaction with positive results. 
But due to high demands and complex software’s it has become less accurate. In this paper, 
various techniques including, ACO, BCO and PSO have been implemented to tune the parameters 
of COCOMO model. IVR dataset has been used for evaluation and validation of these techniques. 
IVR dataset consists of 48 projects along with its size (in KLOC), actual effort (in PM) and time 
duration (in months) [32]. The equation for evaluating the effort using COCOMO is shown in 
equation 4. 
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Effort = 2.4 ∗ (KLOC) 1.05                                                                      ……. (4) 
 

KLOC is a physical measure of size of source program that counts source lines and excludes 
comment and blank space in COCOMO model. The performance is evaluated by Equations 5 and 
6. 

                         
N1 actual effort- predicted effort

MMRE =    
N actual efforti=1

∑                           …........(5) 

                      
N 1 2RMSE =    (actual effort- predicted effort)

Ni=1
∑                          …… (6) 

] 
where actual effort is taken from the data set and predicted effort is the effort calculated 
using proposed technique. 
 

5. RESULTS 
 

The validation of implemented EC techniques is performed by using a dataset of Interactive 
Voice Response (IVR) applications from software industry [32]. The performance of different 
techniques is compared with actual effort of the projects as depicted in Table 1. From Table 1, it 
is evident that effort of the projects after applying different optimization algorithms is quite close 
to the actual effort of dataset [32]. Also from Table 2 and 3, the values of MMRE and RMSE for 
BCO is 0.11 and 7.85 respectively, minimum as compared to other optimization techniques. 
Figure 1a depicts the effort values estimated using COCOMO, ACO, BCO and PSO techniques. 
It is clear that effort estimated using EC techniques is relatively closer to actual effort form the 
dataset. Figures 1b and 1c present the comparison of RMSE and respectively and reveal that BCO 
outperforms relatively than other EC techniques applied. 
  
                       Table 2. MMRE comparison                                     Table 2. RMSE comparison 
 

S.No  Model used MMRE    S.No  Model used RMSE  

1 COCOMO 0.43  1 COCOMO 17.49 

2 ACO 0.27  2 ACO 8.57 

3 BCO 0.11  3 BCO 7,85 

4 PSO 0.19  4 PSO 10.26 

 

6. CONCLUSION 
 

Accurately estimating the effort required to develop a software has always been a concern for 
industry and academia. EC based algorithms have been considered as efficient optimization 
algorithms which can be implemented on very few parameters. In this paper, EC techniques have 
been employed for SEE to provide better estimates. The performance of these techniques has 
been validated using 48 projects of IVR dataset. The value of MMRE for BCO is 0.11 which is 
comparatively less than other existing state of the art SEE algorithmic models. In future, these EC 
techniques can be used with other meta-heuristic techniques to develop ensembles for SEE and 
more datasets can be used to validate the model. 
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a) Effort comparison 
 
 

 
            

b) MMRE comparison 

 

 
 

                                                    c) RMSE comparison 

 
Fig. 1: Graphical representation of effort, MMRE and RMSE 
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Table 1.  Effort estimated using various techniques 
 

Project No. Actual Size Actual Effort COCOMO ACO BCO PSO 

1 16.2 86.1 44.69 90.33 117.37 89.15 
2 5.34 24.02 13.94 15.82 22.21 25.23 

3 7.6 36.05 20.19 27.53 37.71 19.53 

4 4.7 20.74 12.19 12.94 18.34 14.87 

5 3.1 12.85 7.87 6.74 9.82 8.87 

6 5.2 23.3 13.55 15.17 21.34 14.56 

7 6.8 31.72 17.96 23.12 31.92 19.87 

8 6.4 29.59 16.85 21.02 29.14 23.45 

9 7.2 33.88 19.07 25.29 34.78 25.78 

10 5.4 24.34 14.10 16.10 22.59 18.19 

11 8.5 41.01 22.70 32.82 44.61 34.87 

12 7.8 37.15 20.74 28.67 39.21 26.61 

13 12.5 63.9 34.04 60.12 79.55 34.45 

14 10.4 51.71 28.06 45.05 60.37 58.47 

15 9.5 46.6 25.52 39.08 52.71 42.35 

16 3.4 14.29 8.67 7.79 11.28 10.18 

17 6.8 31.73 17.96 23.12 31.92 25.48 

18 5.8 26.42 15.20 18.01 25.14 19.18 

19 7.4 34.96 19.63 26.40 36.23 28.56 

20 7.2 33.88 19.07 25.29 34.78 30.87 

21 8.6 41.56 22.98 33.42 45.40 34.23 

22 6.4 29.59 16.85 21.02 29.14 18.67 

23 10.6 52.86 28.63 46.41 62.12 50.76 

24 6.3 29.06 16.58 20.51 28.46 23.34 

25 4.5 19.73 11.64 12.09 17.18 14.29 

26 9.7 47.73 26.08 40.38 54.38 43.89 

27 8.4 40.45 22.42 32.21 43.82 40.23 

28 6.2 28.53 16.30 20.00 27.79 17.98 

29 8.5 41.01 22.70 32.82 44.61 35.43 

30 6.2 28.53 16.30 20.00 27.79 24.32 

31 2.6 10.5 6.55 5.11 7.55 6.44 

32 2.5 10.03 6.28 4.80 7.12 5.78 

33 4.3 18.73 11.10 11.26 16.05 23.34 

34 4.6 20.24 11.92 12.52 17.76 14.32 

35 6.6 30.65 17.41 22.06 30.52 24.46 

36 7.4 34.96 19.63 26.40 36.23 25.67 

37 4.6 20.24 11.92 12.52 17.76 14.45 

38 8.6 41.56 22.98 33.42 45.40 46.34 

39 5.5 24.85 14.37 16.57 23.22 28.89 

40 4.8 21.25 12.46 13.38 18.93 24.56 

41 18 97.19 49.92 106.58 137.46 138.89 

42 12.5 63.9 34.04 60.12 79.55 84.88 

43 6.7 31.19 17.68 22.59 31.22 34.67 

44 8.4 44.7 22.42 32.21 43.82 46.45 

45 5.7 22.4 14.92 17.52 24.50 28.46 

46 2.8 9.4 7.08 5.74 8.43 9.8 

47 6.4 24 16.85 21.02 29.14 25.45 

48 9.1 49.2 24.39 36.53 49.41 35.68 
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