
International Journal of Computer Science & Information Technology (IJCSIT) Vol 14, No 3, June 2022

DOI: 10.5121/ijcsit.2022.14304 41

EXPLOITING RASPBERRY PI CLUSTERS

AND CAMPUS LAB COMPUTERS FOR
DISTRIBUTED COMPUTING

Jacob Bushur and Chao Chen

Department of Electrical and Computer Engineering,

Purdue University Fort Wayne Fort Wayne, Indiana, USA

ABSTRACT

Distributed computing networks harness the power of existing computing resources and grant access to

significant computing power while averting the costs of a supercomputer. This work aims to configure

distributed computing networks using different computer devices and explore the benefits of the computing

power of such networks. First, an HTCondor pool consisting of sixteen Raspberry Pi single-board

computers and one laptop is created. The second distributed computing network is set up with Windows
computers in university campus labs. With the HTCondor setup, researchers inside the university can

utilize the lab computers as computing resources. In addition, the HTCondor pool is configured alongside

the BOINC installation on both computer clusters, allowing them to contribute to high-throughput

scientific computing projects in the research community when the computers would otherwise sit idle. The

scalability of these two distributed computing networks is investigated through a matrix multiplication

program and the performance of the HTCondor pool is also quantified using its built-in benchmark tool.

With such a setup, the limits of the distributed computing network architecture in computationally intensive

problems are explored.

KEYWORDS

Distributed Computing, Single-Board Computers, Raspberry Pi.

1. INTRODUCTION

Biology, chemistry, computer science, engineering, meteorology, and additional fields of study

share the need to process large amounts of data. From protein folding simulations to sub-atomic
chemical reaction simulations to analyzing large data sets, many fields of research require an

increasing amount of computational power. There are currently two ways to meet this rising

demand - supercomputers and distributed computing networks. Supercomputers are essentially
large computers composed of many processors, typically housed compactly within an array of

server cabinets. The compact arrangement of processors introduces challenges such as hardware,

cooling, space, and electricity costs. These costs can be illustrated using an existing

supercomputer, Summit, at the Oak Ridge National Laboratory. The Summit supercomputer is
composed of 4,608 compute servers, each with two IBM POWER9 22-core processors and six

NVIDIA Tesla V100 graphics processing unit (GPU) accelerators [1,2]. Albeit being a 200-

pertaflop machine, representing the capability to perform 200 quadrillion floating-point
operations per second, Summit comes with a total cost of $325 million, covering its processors,

memory, networking equipment, and other necessary hardware. The supercomputer also requires

approximately 13 MW of power to operate, including both the power consumption of the
hardware and the power usage of the cooling solution. Additionally, the supercomputer occupies

http://airccse.org/journal/ijcsit2022_curr.html
https://doi.org/10.5121/ijcsit.2022.14304

International Journal of Computer Science & Information Technology (IJCSIT) Vol 14, No 3, June 2022

42

5,600 square feet. Therefore, in order to build and operate a supercomputer, an institution must
invest in the hardware, find a space large enough to house the supercomputer, and pay the

recurring electricity costs. Thus, operating a supercomputer is cost-prohibitive for most

institutions. As an alternative, researchers may rent time on supercomputers, but the cost can also

be excessive. For example, one-month usage of Hewlett Packard Enterprise’s smallest GreenLake
cloud supercomputer platform costs $35,883 [3].

Distributed computing networks offer a potentially cheaper alternative without sacrificing
computing power. Distributed computing is based on the premise that many smaller computers

can be networked together, forming a virtual supercomputer. To run a program on a distributed

computing network, the network manager must first split the program into a collection of jobs.
Each job is sent to a computer connected to the network. The results are then returned to the

central manager and presented to the user. These networks are typically configured using

specially developed middleware such as BOINC [4], Folding@Home [5], or HTCondor [6], and

are much cheaper to maintain because of their distributed architecture. Since the middleware
takes care of connecting and managing computers over a network, operators almost entirely

circumvent the hardware, electricity, space, and cooling costs. Additionally, computers on the

network can perform valuable work while otherwise sitting idle. Although they may be cheaper
to operate, distributed computing networks are not necessarily less powerful than

supercomputers. For example, the statistics from Folding@Home project shows ever growing

collective computing power from contributors around the world, with a total processing power of
about 2.4 exaFLOPS in 2020, making it more powerful than the top 500 supercomputers

combined [7]. Thus, distributed computing networks harness the power of existing computing

resources and grant access to significant computing power while averting the costs of a

supercomputer.

Both supercomputers and distributed computing networks offer substantial computing power to

researchers in various fields. However, for many organizations and researchers, the costs
associated with building and maintaining or renting a supercomputer make distributed computing

networks a more attractive option. An important goal of this work is to explore the benefits of

distributed computing in two different computer clusters. First, an HTCondor pool consisting of

sixteen Raspberry Pi single-board computers and one laptop is created. Distributed computing
networks are well suited to problems that can be divided into a collection of smaller, independent

computations. However, not all problems can be separated in such a fashion. Therefore, the

scalability of distributed computing systems in problems like matrix computation is explored in
the Raspberry Pi clusters.

The Raspberry Pi is a low-cost single board computer with convenient sensors and controller
interfaces, as well as connectors to support various peripherals and high network connectivity.

Despite its small physical size, the Raspberry Pi’s computational performance, especially of the

newer models equipped with more powerful ARM processors, can reach the gigaFLOPS level.

The Raspberry Pi has been a popular device to support edge computing in internet-of-things
(IoT). The computing power can be further boosted by creating clusters with multiple Raspberry

Pi systems. In recent years, the CPU and energy consumption of various Raspberry Pi clusters

was evaluated using the HPL benchmark suite [8], a portable version of the LINPACK linear
algebra benchmark for distributed-memory computers. Example Raspberry Pi clusters include a

cluster with 25 Raspberry Pi Model 2B boards in [9] and clusters with 16 Raspberry Pi Model 3B

boards in [10]. In addition, a cluster with 20 Raspberry Pi Model B+ boards was built with the
evaluation focused on cryptography libraries [11].

In our case, we use a matrix multiplication program to evaluate the calculating performance of

the Raspberry Pi cluster. Matrix multiplication is widely used in various computing problems

International Journal of Computer Science & Information Technology (IJCSIT) Vol 14, No 3, June 2022

43

such as linear systems solutions, coordinate transformation, and network theory. It is also one of
the most fundamental and computing intensive operations in machine learning. Evaluating matrix

multiplication can shed light on the capability and scalability of edge devices in artificial

intelligence applications such as federated learning in IoT networks [12].

The second distributed computing network is set up with Windows computers in university

campus labs, where each computer is configured to only execute HTCondor jobs after sitting idle

for a set time. The power of distributed computing networks in computationally intensive
problems is explored in both networks. The same matrix multiplication test was done on the

desktop computer clusters.

In addition to evaluating the computing power of the distributed computing networks, another

goal of this project is to configure distributed computer clusters to contribute to scientific

computing both locally and around the world. For this purpose, a guideline is created, allowing

campus users to securely access to the HTCondor central manager, submit computing jobs, and
retrieve results once done by the HTCondor pool. Moreover, the HTCondor pool is configured

alongside the BOINC installation on both computer clusters, allowing them to contribute to

community research projects such as the IBM World Community Grid [13], when the computers
would otherwise sit idle.

The remainder of this paper is structured as follows. Section 2 provides an overview of
HTCondor and BOINC, the middleware used to set up the distributed computing clusters. Section

3 explains the steps of setting up and configuring Raspberry Pi single-board computers as well as

campus lab computers as distributed computing networks. Section 4 evaluates the computing

performance of the two distributed computing clusters through a matrix multiplication program.
Finally, Section 5 summarizes our effort and discusses future work.

2. DISTRIBUTED COMPUTING MIDDLEWARE

To form independent computers together as a distributed network, middleware is needed to

provide services to enable the various components of a distributed system to communicate and

manage data, so that the computing power of the connected machines can be effectively

harnessed to create a high-throughput computing environment. It is software that lies in between
the operating system and applications, providing programming language and platform

independence, as well as code reuse. This section introduces two types of middleware, HTCondor

and BOINC, that are used to set up the distributed computing networks in this project.

2.1. HTCondor

HTCondor is developed by a team at the University of Wisconsin–Madison and is freely

available for use [14]. Users and administrators may tailor the program’s behaviour to unique

systems, networks, and environments with great flexibility.

HTCondor is a workload management system that provides scheduling policy and priority, as

well as resource monitoring and management [15]. The major processes of an HTCondor system

are depicted in Figure 1. The user submits jobs to an agent. This agent keeps the jobs in persistent
storage while looking for resources willing to run them. Agents and resources advertise

themselves to a matchmaker, which then introduces potential compatible agents and resources.

Once introduced, an agent will contact a resource and verify if the match is still valid. To execute
a job, both the agent and resource must start a new process. At the agent, a shadow provides all of

https://en.wikipedia.org/wiki/University_of_Wisconsin%E2%80%93Madison

International Journal of Computer Science & Information Technology (IJCSIT) Vol 14, No 3, June 2022

44

the necessary details to execute a job. At the resource, a sandbox creates a safe environment to
execute the job.

Figure 2 shows the state machine for the HTCondor program. The following description gives a

broad overview of HTCondor’s behaviour [15].

Figure 1. HTCondor kernel [6]

Figure 2. HTCondor program state machine [15]

When HTCondor starts, it immediately enters the Owner state. In this state, a user is controlling

the computer, or, more generally, the machine is unavailable to run any HTCondor jobs. There
are only two transitions out of the Owner state: HTCondor can initiate draining (N) to transition

to the Drained state, or the START expression evaluates to TRUE (A) allowing a transition to the

Unclaimed state.

One feature of HTCondor includes partitioning system resources into slots. A job may then be

written to request resource slots from a machine such that only a fraction of the system’s

resources is occupied. However, draining, the process of pooling resource slots, is required if a
job requires multiple resource slots. This is the purpose of the Drained state. Once HTCondor has

finished pooling system resources, it transitions to the Owner state (O).

On the other hand, if the START expression evaluates to TRUE (A), that is, the machine is

available to run HTCondor jobs, HTCondor enters the Unclaimed state where it sits idle. There

are five transitions from the Unclaimed state: 1) the user can control the computer causing the

START expression to evaluate to FALSE (B), 2) HTCondor can initiate draining (P), 3)

International Journal of Computer Science & Information Technology (IJCSIT) Vol 14, No 3, June 2022

45

HTCondor can match an available job with the system’s resources entering the Matched state (C),
4) HTCondor can match an available job with the system’s resources entering the Claimed state

(D), and 5) the START_BACKFILL expression evaluates to TRUE (E).

While in the Matched state, HTCondor begins the process for officially claiming a job and
assigning it the machine’s resources. There are only two transitions from the Matched state.

HTCondor can complete the claiming protocol (G), or the START expression evaluates to

FALSE (F) indicating that a user is now controlling the computer. In rare cases, HTCondor may
immediately enter the Claimed state, bypassing the Matched state when certain background

processes (condor_startd and condor_schedd) do not receive the match notification in the correct

order.

In the Claimed state, HTCondor executes the job assigned by the central manager server. The

only transition from the Claimed state is to Preempting state (H), typically meaning either that

the job has finished or that a user is controlling the computer.

In the Preempting state, HTCondor will decide how to assign the system’s resources after

executing a job and exiting the Claimed state. If a job with a higher priority is available,
HTCondor will reassign the system’s resources and reenter the Claimed state (I). If a user is

controlling the computer again, HTCondor will halt execution of all jobs and enter the Owner

state (J).

Finally, in the Backfill state, HTCondor will utilize otherwise idle system resources to execute

some pre-configured tasks. There are three transitions out of the Backfill state. HTCondor can

match an available job with the system’s resources and enter the Matched state (L) or Claimed
state (M), or it will enter the Owner state after the START expression evaluates to FALSE (K)

indicating that a user is now controlling the computer.

In our work, HTCondor is set up and configured on both the computer that serves as the central

manager and the clients (i.e., Raspberry Pis and lab computers) that serve as computing

resources. Users can submit computing jobs to the central manager, and if a client is not under

control by any user for a set time, they are available to run HTCondor jobs.

2.2. BOINC

BOINC is an open-source middleware system for volunteer computing by a team at University of

California, Berkeley [4]. Figure 3 shows the components of the BOINC system.

Volunteers install the BOINC client application on a computing device, choose to support one or

more projects listed on the BOINC website [16], then attach the BOINC client to projects through

the account managers. Each project has a server that distributes jobs to volunteer devices. Once
attached to a project, the BOINC client periodically issues remote procedure calls (RPCs) to the

project’s server to report completed jobs and retrieve new job assignments. The client then

downloads application and input files, execute jobs, and uploads output files. The BOINC client
runs jobs at the lowest process priority and limits the total memory footprint, with the purpose of

computing invisibly to the volunteer.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 14, No 3, June 2022

46

Figure 3. The components and RPC interfaces of the BOINC system [4]

The BOINC client software consists of three programs that communicate via RPCs over a TCP

connection: 1) The core client manages job execution and file transfers. The BOINC installer

initiates the client to run when the computer starts up. It exports a set of RPCs to the GUI and the
screensaver. 2) A GUI (the BOINC Manager) assists volunteers in controlling and monitoring

computation of individual jobs. 3) An optional screensaver shows application graphics for

running jobs when the computer is idle.

In our work, the BOINC client software is installed on the Raspberry Pis and lab computers,

making them as volunteering computing devices. BOINC client is set up as a pre-configured

Backfill task to contribute to the IBM World Community Grid project. Therefore, if the
computers are not under control by a user for a set time, and there is no current HTCondor jobs to

run, they will contribute a promised portion of computing resources to the World Community

Grid project.

3. COMPUTER CLUSTER CONFIGURATION

In this section, the procedures of configuring the middleware on the Raspberry Pi single-board

computers as well as the campus lab computers to form distributed computing networks are
explained.

3.1. Configuring the Raspberry Pi Cluster

3.1.1. HTCondor Installation and Verification

Figure 4. Raspberry Pi HTCondor pool

International Journal of Computer Science & Information Technology (IJCSIT) Vol 14, No 3, June 2022

47

Our first distributed computing cluster consists of sixteen Raspberry Pi single board computers
and an HP Pavilion laptop, interconnected with a TP-Link Gigabit Ethernet switch. This cluster is

depicted in Figure 4. Among the single board computers, there are eleven Raspberry Pi 2B, four

Raspberry Pi 3B, and one Raspberry Pi 3B+ systems, each with a quad-core ARM processor and

Ubuntu Server 20.04 LTS flashed to the SD card. The laptop is installed with Ubuntu Desktop
20.04.

HTCondor is installed on both the laptop, configured as the central manager, and the Raspberry
Pis, as the clients. A central manager has the ability to submit jobs to the pool, allow jobs to be

executed using its resources, and add security configurations (e.g., password) to the pool. To run

any application using this distributed computing network, a user must have access to the laptop.
Each Raspberry Pi is configured as an HTCondor execute node, allowing jobs to be performed

using its resources. After configuring the Raspberry Pis and the laptop, the status of the pool was

queried using the condor_status command.

To test the HTCondor pool, a simple test program called sleep.sh was written and submitted. This

program made an executing machine sleep for six seconds and print its hostname. By checking

the hostname that was returned, the machine executing the job could be identified, and the pool's
functionality could be verified. To execute this program on the pool, the submit file in Figure 5

was written.

Figure 5. Test program submission file

According to the submission file, the sleep.sh program was run 100 times. Each time sleep.sh ran,

stdout was redirected to an output file. Similarly, stderr was redirected to the error file. The

program would only run on computers with an “armv7l” architecture, in our case the Raspberry
Pis. Additionally, any necessary files would be transferred to the executing machine. The job was

then submitted to the pool for execution. The status of the pool during the job was monitored

using condor_status and condor_q commands. The output of running these commands is shown
in Figure 6. The output files were verified to contain the hostname of every Raspberry Pi in the

HTCondor pool. Note that the status of the processor cores of the laptop and only one Raspberry

Pi is included; the rest are omitted due to space.

$ condor_submit sleep.sub

Submitting

job(s)...

.................

100 job(s) submitted to cluster 19.

$ condor_status

Name OpSys Arch State Activity LoadAv Mem ActvtyTime

slot1@htcondorcm.Home LINUX X86_64 Unclaimed Idle 0.020 956 0+22:44:43

slot2@htcondorcm.Home LINUX X86_64 Unclaimed Idle 0.000 956 0+22:45:08

slot3@htcondorcm.Home LINUX X86_64 Unclaimed Idle 0.000 956 0+22:45:08

slot4@htcondorcm.Home LINUX X86_64 Unclaimed Idle 0.000 956 0+22:45:08

slot1@pfwpi2.Home LINUX armv7l Claimed Busy 0.000 213 0+00:00:00

slot2@pfwpi2.Home LINUX armv7l Claimed Busy 0.000 213 0+00:00:03

International Journal of Computer Science & Information Technology (IJCSIT) Vol 14, No 3, June 2022

48

slot3@pfwpi2.Home LINUX armv7l Claimed Busy 0.000 213 0+00:00:02

slot4@pfwpi2.Home LINUX armv7l Claimed Busy 0.000 213 0+00:00:02

...

 Total Owner Claimed Unclaimed Matched Preempting Backfill Drain

 X86_64/LINUX 4 0 0 4 0 0 0 0

 armv7l/LINUX 64 0 64 0 0 0 0 0

 Total 68 0 64 4 0 0 0 0

$ condor_q

-- Schedd: htcondorcm.Home : <192.168.0.98:9618?... @ 10/04/21 23:12:31

OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS

htcondor CMD: sleep.sh 10/4 23:11 59 41 _ 100 19.0-99

41 jobs; 0 completed, 0 removed, 0 idle, 41 running, 0 held, 0 suspended

Figure 6. Pool configuration verification and testing result on the Raspberry Pi cluster

In addition to verifying and testing the HTCondor pool, the pool's performance was also

quantified. Using the condor_status command, the MIPS (millions of instructions per second)

rating for each CPU core was calculated. In total, the HTCondor pool is capable of 232200 MIPS.
For reference, this score is approximately double that of an AMD 5950x (101163 MIPS), one of

the most powerful consumer processors available today [17].

3.1.2. BOINC Installation and Verification

In addition to installing HTCondor, the Raspberry Pis were set up with BOINC running

simultaneously as a pre-configured Backfill task to contribute to the IBM World Community Grid
project. After installing the BOINC package, several configuration files in the /etc/boinc-client

were edited. First, the remote hosts file (remote_hosts.cfg) was edited to allow a separate

computer (i.e., the laptop) with a specified IP address to control the BOINC client remotely. After
saving the remote hosts file, the core client configuration file (cc_config.xml) was edited to

enable remote connections. Then, the password file (gui_rpc_auth.cfg) was edited with a

password to authenticate remote BOINC connections. Finally, BOINCTasks was installed on the
laptop specified in the remote hosts file to view the BOINC client installed on each Raspberry Pi.

Figure 7 depicts all the Raspberry Pis (circled in red) are listed in the BOINCTasks program.

Figure 7. BOINCTasks computer view

The Raspberry Pis were also visible from the World Community Grid website [13] depicted in

Figure 8 providing additional verification that they were contributing to research projects. The
device names are circled in red – please note that not all devices are included due to space.

Additionally, through the World Community Grid website, the behaviour of the devices can be

International Journal of Computer Science & Information Technology (IJCSIT) Vol 14, No 3, June 2022

49

altered by editing device profiles, and new devices can be added by copying the account key and
project URL.

Figure 8. World Community Grid device management page

3.2. Configuring Campus Lab Computers

After successful installation of HTCondor and BOINC on the Raspberry Pi cluster, the next step is

to configure the lab computers on campus as a distributed computing cluster. We obtained the
permission to install HTCondor and BOINC on the Windows computers in the computer labs

limited to one campus building. In these labs, there are 252 desktop computers with 1,140 physical

CPU cores, contributing to a total computing capability of 19.872 teraFLOPS. This aggregated

computing power is about 0.937% performance of the 500th supercomputer on the current Top500
most powerful supercomputer systems list [18]. In addition, a campus cloud server was reserved as

the HTCondor central manager server.

Unlike the Linux version of the software, the Windows version of HTCondor comes bundled with

an installer. This installer automatically configures the computer using a configuration file.

However, some manual configuration (the same process used for the Raspberry Pi cluster) is still
required to specify the security settings. After configuring HTCondor, the installation was verified

by entering the condor_status command in the command line.

Additionally, a simple test program called sleep.bat was written and submitted to the HTCondor

central manager. Similar to the sleep program in Section 3.1.1, this program made the executing

machine sleep for six seconds and print its hostname. While the batch of jobs was running, the

status of each CPU core on lab computers were monitored by entering the condor_status

command again, with similar running result as in Figure 6. By observing each CPU core status, we
verified that the software was installed and configured properly.

In addition to exploring the computing power of the distributed computing networks, another goal
of this project is to configure distributed computer clusters to contribute to scientific computing

both locally and around the world. For this purpose, a guideline is created to allow campus users to

securely access to the HTCondor manager, submit computing jobs there, and retrieve results once

the jobs are completed by the HTCondor pool. This provides a convenient way for campus users to
utilize lab computers as powerful computing resources.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 14, No 3, June 2022

50

Besides HTCondor, BOINC was also installed on the lab computers. Like HTCondor, the Windows
version of BOINC is accompanied by an installer which automatically configures the behaviour of

the BOINC client. By checking the World Community Grid device management page, similar as in

Figure 8, the BOINC installation could be verified.

After successful installation and configuration of HTCondor and BOINC, each lab computer

connected to the distributed computing network is configured to always be in one of the following

three states with decreasing priority: owner - under control by a legitimate user; busy - working on a
submitted job to HTCondor pool; or backfill - contributing to World Community Grid.

Currently the office of information technology services on campus is in charge of managing and the
distributed computing network with the lab computers. Security audits will be done periodically to

make sure no intruders would access the computers and cause harm to the campus network.

Additionally, information regarding the distributed computing network will be spread to faculty to

raise awareness about the computing resource available for their research.

4. COMPUTING PERFORMANCE EVALUATION

To evaluate the computing power and the scalability of the two constructed distributed computing
clusters, a simple matrix multiplication program was written and run using the HTCondor

pool.This program computes the product of two square matrices of the same size. The program

required three arguments to specify the dimensions of the matrix, number of CPU cores involved

in calculation, and the portion of the product matrix to calculate. For example, if arguments 64, 1
and 0 were provided, a single CPU core would calculate the product of two 64x64 matrices. If

arguments 128, 64, and 0 were provided, the program would split the multiplication of two

128x128 matrices into 64 parts and compute the first portion of the matrix product. Tests were
conducted using 1, 2, 4, 8, 16, 32, and 64 cores to multiply two 1024x1024, 2048x2048, or

4096x4096 matrices on the two networks: Raspberry Pi cluster and the lab computer cluster. The

time required for each test was determined by examining the timestamps of the first and last log
file entries. For each combination of matrix size and number of cores, three trials were conducted

on the Raspberry Pi cluster, whereas ten trials were conducted on the lab computer cluster. The

tests were run when the clients are not under control of any users. The average execution time for

each test was calculated, with results listed in Table 1.

Table 1. Matrix multiplication execution times on both distributed computing networks.

Matrix Size Cores
Average Time (MM:SS)

Raspberry Pi Cluster Lab Computer Cluster

4096x4096

64 01:02 00:17

32 01:42 00:19

16 02:41 00:40

8 04:26 00:53

4 08:17 01:24

2 15:28 03:09

1 27:47 05:31

2048x2048

64 00:25 00:07

32 00:19 00:05

16 00:20 00:08

8 00:36 00:13

4 00:59 00:15

2 01:53 00:42

1 03:35 00:59

International Journal of Computer Science & Information Technology (IJCSIT) Vol 14, No 3, June 2022

51

1024x1024

64 00:22 00:04

32 00:12 00:03

16 00:04 00:07

8 00:06 00:06

4 00:09 00:07

2 00:16 00:08

1 00:29 00:12

In general, as the number of cores increases, the execution time decreases. However, as the

matrix size decreases and the number of cores increase, this relationship is no longer true. This

observation is best visualized in Figure 9.

For 1024x1024 and 2048x2048 matrices, the optimum number of cores was 16 or 32 in the two

distributed computing networks, not the largest number of cores (64). This counterintuitive

observation is most plausibly explained by HTCondor’s overhead. For HTCondor to complete a
job, it must match the job with a client, send the program to execute, wait for the client to execute

the program, and receive the computation results. The total time to complete a single job is

expressed using (1).

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑚𝑎𝑡𝑐ℎ + 𝑇𝑠𝑒𝑛𝑑 + 𝑇𝑒𝑥𝑒 + 𝑇𝑟𝑒𝑐𝑒𝑖𝑣𝑒 = 𝑇𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 + 𝑇𝑒𝑥𝑒 (1)

Where 𝑇𝑡𝑜𝑡𝑎𝑙 is the total job completion time, 𝑇𝑚𝑎𝑡𝑐ℎ is the time required to match a job with a

client, 𝑇𝑠𝑒𝑛𝑑 is the time required to send the client the required resources, 𝑇𝑒𝑥𝑒 is the time

required by the client to complete the job, and 𝑇𝑟𝑒𝑐𝑒𝑖𝑣𝑒 is the time required to send the results

back to the central manager server. 𝑇𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = 𝑇𝑚𝑎𝑡𝑐ℎ + 𝑇𝑠𝑒𝑛𝑑 + 𝑇𝑟𝑒𝑐𝑒𝑖𝑣𝑒 , referring to the total

overhead time involved but not actually in executing the job itself.

(a)

0:00:00

0:05:00

0:10:00

0:15:00

0:20:00

0:25:00

0:30:00

1 2 4 8 16 32 64

A
ve

ra
ge

 T
im

e
(H

:M
M

:S
S)

Core Count

Average Time vs Core Count (Raspberry Pis)

4096x4096

2048x2048

1024x1024

International Journal of Computer Science & Information Technology (IJCSIT) Vol 14, No 3, June 2022

52

(b)

Figure 9. Task completion time vs number of cores in (a) the Raspberry Pi cluster and (b) the lab computer

cluster

Assuming in the same distributed computing network, 𝑇𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 stay approximately constant for
different jobs, the time benefits of a distributed computing network may be predicted based on

the relationship between 𝑇𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 and 𝑇𝑒𝑥𝑒. For example, to execute the same job, assuming

highly parallelizable, if the total number of computing cores in a distributed computing network

is doubled, the job execute time 𝑇𝑒𝑥𝑒 will be halved. In the limit, if 𝑇𝑒𝑥𝑒 is significantly longer

than 𝑇𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑, the total job completion time approaches ½ of before, which is the ideal result of

doubling the number of cores. On the other hand, if 𝑇𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 is comparable to or longer

than𝑇𝑒𝑥𝑒, the work will not benefit much from additional cores and further division into smaller

jobs. Additionally, if 𝑇𝑒𝑥𝑒 is too small, meaning the job is simple and can be done extremely fast,

the execute nodes could return results before the central manager has completed the match

process for the remaining jobs. In this scenario, the total completion time for a batch of jobs

could increase. Consequently, the work will only benefit from additional cores and further

division into smaller jobs if 𝑇𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 is significantly shorter than 𝑇𝑒𝑥𝑒.

5. CONCLUSIONS AND FUTURE WORK

In conclusion, an HTCondor pool was successfully created using a collection of sixteen

Raspberry Pi single-board computers and one laptop. The pool's functionality was verified using

a simple test job. Computing intensive programs such as matrix multiplication can be efficiently

split into smaller jobs to be distributed to the Raspberry Pis and executed independently. The
computing power of the Raspberry Pi cluster can be greatly boosted by forming a distributed

computing network, making it suitable to carry out compute-intensive applications such as

federated learning in power-constrained IoT devices.

A similar HTCondor pool was constructed to form a second distributed computing system

composed of Windows computers in campus labs. As a result, university faculty and students
have access to a significant amount of computing power by submitting computing jobs to the

HTCondor central manager server. In addition to installing and configuring HTCondor, BOINC

was also installed on the Raspberry Pi cluster and lab computer cluster as a Backfill task to

contribute to scientific computing projects such as the IBM World Community Grid. In this
configuration, researchers partnered with scientific computing projects associated with BOINC

0:00:00
0:00:30
0:01:00
0:01:30
0:02:00
0:02:30
0:03:00
0:03:30
0:04:00
0:04:30
0:05:00
0:05:30
0:06:00

1 2 4 8 16 32 64

A
ve

ra
ge

 T
im

e
(H

:M
M

:S
S)

Core Count

Average Time vs Core Count (Lab Computers)

4096x4096

2048x2048

1024x1024

International Journal of Computer Science & Information Technology (IJCSIT) Vol 14, No 3, June 2022

53

will have more resources available from the community to help with high-demand computing
needed for research such as climate, cancer, and vaccine study.

Additionally, the scalability of distributed computing networks in matrix multiplication was

investigated on the Raspberry Pi cluster and lab computer cluster. In general, as the number of
cores increases, the execution time decreases. However, as the matrix size decreases and the

number of cores increase, this relationship is no longer valid. This counter-intuitive observation is

most plausibly explained by HTCondor’s overhead. Additionally, the relationship between
HTCondor’s overhead (primarily the time required to match jobs with resources) and the

execution time of a job may predict the benefit of further parallelization. Regardless, the power of

distributed computing systems is apparent: many small computers can create a body of
computing power on par with most powerful consumer hardware available on the market.

Future directions of the work include evaluating different types of programs in distributed

computing networks. Unlike matrix multiplication, not all compute-intensive programs can be
parallelized easily. The power of distributed computing, especially of resource-constrained IoT

devices like the Raspberry Pi should be evaluated for different types of computations (e.g.,

convolution and filtering) involved in edge computing. Furthermore, as security is always a
concern for any distributed network, mechanisms such as encryption, authentication, and load

balancing need to be carefully studied.

ACKNOWLEDGEMENTS

The authors would like to thank the Chapman Scholars Program, the Electrical and Computer
Engineering Department, and the Office of Information Technology Services at Purdue

University Fort Wayne for financial and technical support for this project.

REFERENCES

[1] S. S. Vazhkudai, et al. (2018) “The design, deployment, and evaluation of the CORAL pre-exascale

systems.” in Proc. Supercomputing 2018 (SC18): 31th Int. Conf. on High Performance Computing,

Networking, Storage and Analysis, Dallas, TX.

[2] Summit - Oak Ridge leadership computing facility, [online]. Available:

https://www.olcf.ornl.gov/summit/ (accessed May 2022).
[3] HPE GreenLake for high performance computing platform, [online]. Available:

https://www.hpe.com/us/en/greenlake/hpc.html (accessed May 2022).

[4] D. P. Anderson, (2020) “BOINC: A platform for volunteer computing,” Journal of Grid Computing,

vol. 18, pp. 99-122, doi: 10.1007/s10723-019-09497-9.

[5] S. M. Larson, C. D. Snow, M. Shirts, and V. S. Pande, (2009) “Folding@Home and Genome@Home:

Using distributed computing to tackle previously intractable problems in computtaional biology,”

arXiv preprnt, doi: 10.48550/arXiv.0901.0866.

[6] D. Thain, T. Tannenbaum, and M. Livny, (2005) “Distributed computing in practice: The Condor

experience,” Concurrency and Computation: Practice and Experience, vol. 17, iss. 2-4, pp. 323-356,

doi: 10.1002/cpe.938.

[7] H. Mujtaba, “Folding@Home now at almost 2.5 Exaflops to fight COVID-19 – Faster than top 500

supercomputers in the world,” [online]. Available: https://wccftech.com/folding-home-almost-2-5-
exaflops-fight-covid-19-faster-than-top-500-world-supercomputers/ (accessed May 2022).

[8] A. Petitet, R. C. Whaley, J. Dongarra, A. Cleary, “HPL – A portable implementation of the high-

performance linpack benchmark for distributed-memory computers,” [online]. Available:

https://www.netlib.org/benchmark/hpl/ (accessed May 2022)

[9] M. F. Cloutier, C. Paradis, and V. M. Weaver, (2016) “A Raspberry Pi cluster instrumented for fine-

grained power measurement,” Electronics, vol. 5, no. 4, 61, doi: 10.3390/electronics5040061

[10] P. J. Basford et al., (2020) “Performance analysis of single board computer clusters,” Future

Generation Computer Systems, vol. 102, pp. 278–291, doi: 10.1016/j.future.2019.07.040

https://www.olcf.ornl.gov/summit/
https://www.hpe.com/us/en/greenlake/hpc.html
https://onlinelibrary.wiley.com/journal/15320634
https://wccftech.com/folding-home-almost-2-5-exaflops-fight-covid-19-faster-than-top-500-world-supercomputers/
https://wccftech.com/folding-home-almost-2-5-exaflops-fight-covid-19-faster-than-top-500-world-supercomputers/
https://www.netlib.org/benchmark/hpl/

International Journal of Computer Science & Information Technology (IJCSIT) Vol 14, No 3, June 2022

54

[11] D. Hawthorne, M. Kapralos, R. W. Blaine, and S. J. Matthews, (2020) “Evaluating cryptographic

performance of Rapsberry Pi clusters,” in Proc. 2020 IEEE High Performance Extreme Computing

Conference (HPEC), pp. 1-9, doi: 10.1109/HPEC43674.2020.9286247.

[12] S. Savazzi, M. Nicoli and V. Rampa, (2020) “Federated Learning with cooperating devices: A

consensus approach for massive IoT networks,” IEEE Internet of Things Journal, vol. 7, no. 5, pp.
4641-4654, doi: 10.1109/JIOT.2020.2964162.

[13] World Community Grid, [online]. Available: https://www.worldcommunitygrid.org/ (accessed May

2022).

[14] HTCondor Overview, [online]. Available: https://htcondor.org/htcondor/overview/ (accessed May

2022).

[15] Center for High Throughput Computing, University of Wisconsin–Madison, “Policy Configuration

for Execute Hosts and for Submit Hosts — HTCondor Manual 9.4.0 documentation,” [online].

Available: https://htcondor.readthedocs.io/en/latest/admin-manual/policy-configuration.html

(accessed December 2021).

[16] BOINC: Compute for Science, [online]. Available: https://boinc.berkeley.edu, (accessed May 2022).

[17] AMD Ryzen 9 5950X Benchmarks, [online]. Available:

https://openbenchmarking.org/vs/Processor/AMD%20Ryzen%209%205950X%2016-Core (accessed
December 2021).

[18] TOP500 List - November 2021, [online]. Available:

https://www.top500.org/lists/top500/list/2021/11/ (accessed May 2022).

https://www.worldcommunitygrid.org/
https://htcondor.org/htcondor/overview/
https://htcondor.readthedocs.io/en/latest/admin-manual/policy-configuration.html
https://boinc.berkeley.edu/
https://openbenchmarking.org/vs/Processor/AMD%20Ryzen%209%205950X%2016-Core
https://www.top500.org/lists/top500/list/2021/11/

	Abstract
	Keywords
	Distributed Computing, Single-Board Computers, Raspberry Pi.

