Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Social Media Spam Detection Using Different Text Feature Selection Technique and Machine Learning


Affiliations
1 Department of Computer Science and Engineering, Sage University, India
     

   Subscribe/Renew Journal


The messaging systems and social media is popular and has essential contributions to our social and professional life. Similarly, Spam is a part of the messaging system and social media. In social media, spam is found in various places (i.e. in posts, in comments, in reviews, and in chatting). Social media Spam is aimed to influence the user’s decision, point of view, and credibility of the service or brand. Therefore, social spam detection is essential. However, using the social media data a number of contributions are available in literature, but a fewer amount of work is available for social media spam detection. In this paper, we proposed a social media spam detection technique using machine learning and text feature extraction techniques. In this context first, a review on social media spam detection techniques has been carried out. Using this review, we extract the different machine learning techniques used, techniques of text feature selection, and experimental datasets used. In this review, we found that the spam messages with the URLs are more critical and harmful. Next step, we design a theoretical model for social media spam detection, which includes text feature selection techniques (i.e. TF-IDF, POS, and Information Gain) and their combinations (POS+TF-IDF and POS+IG). These features are used with Support Vector Machine (SVM), Artificial Neural Network, and Naïve Bayes classifier for training. Experimental analysis with dataset available in Kaggle we found that hybrid features is more effective for accurate classification as compared to individual features. Additionally, we found for classification the SVM and ANN are more accurate as compared to the Bayes classifier.

Keywords

Social Media Spam, Experimental Analysis, Text Feature Selection, Classification, Social Spam Filtering
Subscription Login to verify subscription
User
Notifications
Font Size


  • Social Media Spam Detection Using Different Text Feature Selection Technique and Machine Learning

Abstract Views: 282  |  PDF Views: 2

Authors

Anubha Sharma
Department of Computer Science and Engineering, Sage University, India
Manoj Ramaiya
Department of Computer Science and Engineering, Sage University, India

Abstract


The messaging systems and social media is popular and has essential contributions to our social and professional life. Similarly, Spam is a part of the messaging system and social media. In social media, spam is found in various places (i.e. in posts, in comments, in reviews, and in chatting). Social media Spam is aimed to influence the user’s decision, point of view, and credibility of the service or brand. Therefore, social spam detection is essential. However, using the social media data a number of contributions are available in literature, but a fewer amount of work is available for social media spam detection. In this paper, we proposed a social media spam detection technique using machine learning and text feature extraction techniques. In this context first, a review on social media spam detection techniques has been carried out. Using this review, we extract the different machine learning techniques used, techniques of text feature selection, and experimental datasets used. In this review, we found that the spam messages with the URLs are more critical and harmful. Next step, we design a theoretical model for social media spam detection, which includes text feature selection techniques (i.e. TF-IDF, POS, and Information Gain) and their combinations (POS+TF-IDF and POS+IG). These features are used with Support Vector Machine (SVM), Artificial Neural Network, and Naïve Bayes classifier for training. Experimental analysis with dataset available in Kaggle we found that hybrid features is more effective for accurate classification as compared to individual features. Additionally, we found for classification the SVM and ANN are more accurate as compared to the Bayes classifier.

Keywords


Social Media Spam, Experimental Analysis, Text Feature Selection, Classification, Social Spam Filtering

References