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ABSTRACT: 

In this paper, response surface method is used to find out the fatigue life equation by taking load and dimensions of the 

wheel as variables. The natural frequency is taken as a factor for fatigue life. An ANOVA analysis is carried out to 

formulate the natural frequency function. An objective function has been formulated to minimise the mass of railway 

wheel considering the strength and geometrical constraints of inner hub-hole, hub-web interface and hub-rim interface. 
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NOMENCLATURE: 

x1 Inner hub hole radius in mm. 

x2 Outer radius at hub/web interface in mm. 

x3 Outer radius at hub/rim interface in mm. 

E Young’s modulus. 

ν Poisson’s ratio. 

σy Yield strength. 

ρ Density of the wheel. 

1. Introduction 

In recent years, higher train speeds and increased axle 

loads have led to larger wheel/rail contact forces. Efforts 

have been made to optimize the wheel and rail design to 

improve the performance and reduce the cost. These 

trends have changed the major wheel rim damage from 

wear to fatigue. Unlike the slow deterioration process of 

wear, fatigue causes abrupt fracture in wheels or the 

tread surface material loss. For fatigue analysis, there are 

three phases (a) Fatigue initiation, (b) Crack 

propagation, (c) Fatigue fracture, which have their 

occurrence time. If it is able to predict the initiation of 

fatigue, the wheel life can be increased by optimising 

various parameters [8]. The design variable is taken as 

parameter to optimize the required objective which is 

shown by Nielsen [9]. Railway vehicles are the most 

energy efficient, safe, and economic overland movers of 

passengers and heavy freight. Railway wheel is the basic 

component of railway vehicles, which not only provides 

the support to the entire vehicle but also guides and 

provides steerability for the train and carries the heavy 

load. Generally, wheel fails due to fatigue for long run. 

The conventional wheels have been designed for large 

number of load cycle but are overweight.  

In this paper we have taken a natural frequency 

based approach [2] to optimise the wheel mass using 

response surface method (RSM). The mode shapes and 

their natural frequency are obtained using finite element 

(FE) method. The mode shape of interest the frequency 

at which the rotation is for degree of freedom of the 

wheel vibrates. We obtained various rotational 

frequencies to fit within standard central composition 

design (CCD) model available in MINITAB Design of 

Experiments (DoE) Software. A complete regression 

analysis is carried out by Analysis of Variance 

(ANOVA) and generated response surface using RSM so 

as to optimize the equation for natural frequency. For 

optimizing the mass of railway wheel an objective 

function considering mass with geometry and frequency 

constraints has been generated. 

2. Finite element modelling and analysis 

For obtaining natural frequency we must understand well 

the formulation of wheel-rail interaction and the contact 

model [8]. When the wheel is moving on the rail with 

some angular velocity, the vehicle load is transmitted 

from body to the rail by axle, wheel and wheel-rail 

interaction. The wheel is assumed to be fixed with axle 

by hub and there is no slipping between them. A 3D FE 

model of wheel and rail are simulated using ABAQUS 

version 6.10-1 for practical conditions such as speed, 

load and interaction to obtain the contact pressure and its 

significance on the wheel. The wheel is meshed using 

hexahedral element type C3D8R and wedge element 

type C3D6. The rail is meshed hexahedral element type 

C3D8R. Steel material properties as E= 206 GPa, ν = 

0.3, σy = 250MPa and ρ = 7850kg/m
3
 are used.  
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The wheel and rail are idealised to have surface to 

surface contact with finite sliding. In this contact 

formulation, the rail head surface is taken master surface 

and the wheel tread surface is taken as slave. The normal 

contract properties are idealised as hard with default 

parameters. The tangential contact properties are 

idealised as penalty based friction contact with friction 

coefficient of 0.3. A standard wheel profile with x1= 

40mm, x2 = 76mm, and x3 = 265mm as shown in Fig. 1 

is meshed. The mesh and model summary for a standard 

wheel-rail contact model is presented in Fig. 2 and Table 

1 respectively. When the wheel dimensions are varied, 

the mesh of wheel is also changed by keeping 

hexahedral element type. However, linear wedge 

elements are used by Abaqus software to fit with the 

change in the geometry in some places. 
 

 

Fig. 1: Cross-section view of standard wheel profile 

 

Fig. 2: 3D FE model of standard wheel and rail 

Table 1: Model summary of standard wheel and rail 

Component Wheel Rail 

Nodes 2292 374 

C3D8R Elements 1624 210 

C3D6 Elements 87 0 

The pivot point of wheel is constrained in 

translations TX and TZ and rotations RX and RY. The 

foot of rail is constrained in all degrees of freedom. The 

FE model discretizes the whole body in to elements to 

derive the stiffness and mass matrix for each element. 

Assembling all the element stiffness and mass matrices 

yields the stiffness matrix Km, and mass matrix Mm, of 

the Wheel for the particular circumferential vibration 

mode m. The eigenvalue problem can be solved using, 

  02  qMK mm      (1) 

Where ωmn is the n
th
 natural frequency with m nodal 

diameters and qmn is the corresponding eigenvectors. The 

natural frequencies for the first 10 modes of the standard 

wheel-rail model as obtained through ABAQUS 

simulation are given in Table 2. First 4 mode shapes are 

shown in Fig. 3 to Fig. 6. 

Table 2: First 10 natural frequencies for standard wheel-rail 

Mode number   Frequency(Hz) 

1 0.315039 

2 0.315039 

3 0.497019 

4 0.619044 

5 0.679175 

6 0.679901 

7 1.744317 

8 1.744317 

9 1.772315 

10 1.772315 

 

 

Fig. 3: First mode shape at 0.315039 Hz 

 

Fig. 4: Second mode shape at 0.315039 Hz  
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Fig. 5: Third mode shape at 0.497019 Hz 

 

Fig. 6: Fourth mode shape at 0.619044 Hz 

3. Response surface method & optimisation 

In this study, RSM was used to determine the optimum 

design for the minimization of the wheel mass within 

specific fatigue life. The significant process variables 

were identified by using the CCD based on DoE 

principles. The natural frequency response y is 

determined as a function of multiple design variables 

(xi). The behaviour in RSM is expressed by the 

approximation as a polynomial y=f(x) on the basis of the 

observed data. A quadratic response function with two 

variables for a regression model is expressed by, 

  215

2

24

2

1322110 xxxxxxy   (2) 

Where 543210  and,,,,   are the regression 

coefficients   is the approximation error. The method of 

least squares is typically used to estimate the regression 

coefficients in a multiple linear regression model. 

Suppose that n > k observations on the response variable 

are available, say y1, y2,…., y12, for each observed 

response yi, we will have an observation on each 

regression variable. Let xij denotes the i
th

 observation of 

variable xj. The model in terms of the observations may 

be written in matrix notation as 

  Xy      (3) 

Where y is an nxl vector of the observations, X is an nxp 

matrix of the levels of the  independent variables.   is a 

px1 vector of the regression coefficients.   is an nx1 

vector of random errors.  

Our aim is to find the vector of least squares 

estimators, b, that minimizes the following function, 

    XyXyL
n

i
i 



''

1

2    (4) 

After some simplifications, the least squares estimator of 

  is derived as, 

  yXXXb '1' 
     (5) 

It is easy to note that XX   is a pxp symmetric matrix 

and yX   is a px1 column vector. The diagonal elements 

of XX   are the sums of squares of the elements in the 

columns of X. The off-diagonal elements of XX   are the 

sums of cross-products of the elements in the columns of 

X. The elements of yX   are the sums of cross-products 

of the columns of X and the observations {yi}.The fitted 

regression model is given by, 

Xby ˆ      (6) 

It is always necessary to examine the fitted model to 

ensure that it provides an adequate approximation to the 

true system. We consider several techniques for 

checking model adequacy and verify that none of the 

least squares regression assumptions are violated. 

The method of least squares produces an unbiased 

estimator of the parameter β in the multiple linear 

regression models. The residual sum of squares is, 
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yXbyySSE      (8) 

The total sum of squares is given by, 
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 (9) 

The coefficient of multiple determination R
2
 is given by, 

T

E

SS

SS
R 12                  (10) 

Where R
2
 is a measure of the amount of reduction in the 

variability of y obtained by using the regression 

variables x1, x2, ..., xk in the model. Where x1, x2 and x3 

are the radius of inner hub hole, hub web outer interface 

and hub/rim outer interface respectively.  

The objective function for minimization of mass of 

the railway wheel is as follows, 

  ]03.3011.18235.4[,, 2

31

2

21

3

1321 xxxxxxxxf          (11) 

The constraints for the minimisation are as follows, 

yapplied   , 012  xx , 034 13  xx , 0,, 321 xxx , 

and   62.0,, 321 xxxy .Where y is natural frequency. 

The applied stress applied is derived from FEA. The 

variation of the natural frequency for the considered 

design variable ranges by running the simulation in 

ABAQUS software many times. A 20% variation (-1 

for -20% and 0 for standard value and 1 for +20%) in 

design variables is used for the FE simulations based on 

CCD [7]. Table 3 the frequency results of the CCD array 

and highlighted in bold are the rotational mode 

frequencies of interest to the fatigue problem. 
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Table 3: Result of frequency analysis with design model (values in bold refer rotational mode) 

STD 

Order 
Coded values of design variables Mode No. with frequency (in Hz) 

 x1 x2 x3 1 2 3 4 5 6 

1 -1 -1 -1 0.2931 0.2931 0.4711 0.56697 0.6958 0.6963 

2 1 -1 -1 0.2947 0.2947 0.4728 0.61633 0.6958 0.6964 

3 -1 1 -1 0.3253 0.3253 0.494 0.61579 0.6432 0.6442 

4 1 1 -1 0.3277 0.3277 0.4963 0.64248 0.6435 0.6759 

5 -1 -1 1 0.3252 0.3252 0.4941 0.61582 0.6391 0.6401 

6 1 -1 1 0.3271 0.3271 0.4959 0.63923 0.6402 0.6744 

7 -1 1 1 0.341 0.341 0.5166 0.62849 0.64 0.6407 

8 1 1 1 0.3425 0.3425 0.5181 0.64005 0.6408 0.69 

9 -1.68179 0 0 0.3326 0.3326 0.51 0.59531 0.6531 0.6539 

10 1.68179 0 0 0.3357 0.3357 0.513 0.65329 0.654 0.6937 

11 0 -1.68179 0 0.3221 0.3221 0.5021 0.62456 0.6719 0.6727 

12 0 1.68179 0 0.3402 0.3402 0.5158 0.64486 0.6456 0.657 

13 0 0 -1.68179 0.2997 0.2997 0.4792 0.58815 0.7221 0.7229 

14 0 0 1.68179 0.3213 0.3213 0.4987 0.64426 0.645 0.6456 

15 0 0 0 0.315 0.315 0.497 0.61904 0.6792 0.6799 

16 0 0 0 0.315 0.315 0.497 0.61904 0.6792 0.6799 

17 0 0 0 0.315 0.315 0.497 0.61904 0.6792 0.6799 

18 0 0 0 0.315 0.315 0.497 0.61904 0.6792 0.6799 

19 0 0 0 0.315 0.315 0.497 0.61904 0.6792 0.6799 

20 0 0 0 0.315 0.315 0.497 0.61904 0.6792 0.6799 

 

In order to evaluate influential factors in the 

quadratic RSM, an ANOVA table was established as 

given in Table 4. The variance analysis was statistically 

significant at a 99.1% confidence level. The design 

variables x1, x2 and x3 have significant effects on the 

natural frequency of the wheel. Finally, the assumptions 

for regression and variances of the residuals are verified. 

Therefore it can be concluded that the quadratic model is 

adequate enough to describe the natural frequency 

response surface. The equation for the fitted quadratic 

regression model is given by, 

 

3132
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xxxxxy
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
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              (12) 

Table 4: ANOVA for fatigue initiation life 

Factor Regression Error 

Sum of square 0.020744 0.000193 

DOF 9 10 

Adj sum of square 0.020744 0.000193 

Adj Mean square 0.002305 0.000019 

F 119.15 - 

P 0 - 
 

The effects of design variables on the natural 

frequency can be understood from the response function 

using FE simulation in Abaqus. To determine the 

optimal natural frequency, 3D response surface plots 

were plotted using the responses of the natural 

frequency. The 3D surface plots were generated as a 

function of a pair of significant design variables while 

holding the third significant variable constant for each 

response. Figs. 6 to 8 show the 3D response surface at 

the three levels of x1, x2 and x3 respectively. The 

relationship between the responses and design variables 

and the nature of the stationary point can be easily 

predicted. From the predicted responses it is clear that 

the stationary point is representing a point of minimum 

response for natural frequency.  
 

  

Fig. 6: Response surface of natural frequency for constant x1 

 

Fig. 7: Response surface of natural frequency for constant x2 

 

Fig. 8: Response surface of natural frequency for constant x3 
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Eqn. (12) is further used as a constraint for the 

objective function for mass optimization of the wheel. 

The objective function and constraint equations were 

solved using Matlab code. Standard wheel mass was 

210.38kg. After running the MATLAB code, the 

optimum mass obtained is 200.8724 kg (4%reduction). 

4. Conclusions 

The main objective of this study was to carry out 

parametric analysis of a railway wheel to minimize the 

weight of the railway wheel. The wheel was modelled by 

some initial dimensions subjected to impose constraints 

like natural frequency that was obtained through FE 

analysis. The design variables were the inner hub hole 

radius, outer radius of fillet at hub/web interface and 

outer radius of fillet at web/rim interface. The natural 

frequency values for varying the design variable has 

been inspected using RSM and ANOVA and an equation 

is obtained to understand the behaviour of the responses. 

The responses have been plotted and found that the 

equation is fit for prediction of natural frequency at any 

point of variation of design variable. 
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