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ABSTRACT: 

To reduce the torsional vibration of vehicle power transmission system (VPTS), a torsional vibration model with 

multiple degrees of freedom (MDOF) of VPTS was established. The scheme of equipping torsional vibration dampers 

(TVDs) on the driveshaft was employed by the calculation of the forced vibration and the free vibration of the VPTS. 

The energy method was used to optimize the parameters of single-stage, two-stage parallel and two-stage series TVDs 

based on the principle that balances the damping effect and lightweight design. On the basis of this, the parameters of 

the models incorporating TVD and elastic couplings were optimized. Results showed that the proposed method can 

ensure the damping effects of TVD and realize the lightweight design. 
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1. Introduction 

Researches regarding the parameters optimization of the 

passive torsional vibration dampers (TVDs), dynamic 
vibration absorbers (DVAs), and tuned mass dampers 

(TMDs) have been well-established. Researchers have 

primarily included the vibration suppression of single 

degree of freedom (SDOF) system and MDOF system 

[1-2], nonlinear system [3], continuous system [4], and 

multiple modes of the main system [5], and the 

mechanical performances of the single-stage and multi-

stage TVDs [6-7] and nonlinear DVAs [8], and the 

continuous parameter DVAs [9], and robust optimization 

[10], and multi-objective optimization. Nonetheless, 

most of the investigations have been conducted to 

optimize and match the stiffness and damping 
coefficients of damping devices with a fixed moment of 

inertia (abbreviated henceforth as inertia) or mass value. 

There has been little mention of the optimization for 

inertia or mass values. The TVD inertia values are 

usually estimated with experience under practical 

conditions. If the inertia values are chosen as too small, 

the damping effects of the TVD may be unsatisfied. 

On the other hand, the low power transmission 

efficiencies will occur with the large inertia values. We 

wish the larger gyration radius to obtain lightweight 

TVDs in its structural design with a fixed inertia value. 
The matched TVD to the VPTS generally equipped on 

the driveshaft which brings a limited outer radius of the 

TVD, because the installation position is closer to the 

fuel tank. From this perspective, selecting a smaller 

inertia value can improve the lightweight design of the 

TVD. We wish the TVD provides good damping effect 

but with a smaller inertia value, however, there is no 

uniform standard of the inertia values selection. Fig. 1 

shows a two degrees of freedom system of a TVD 

resonating on a main system, where Jeq and Keq represent 

the inertia and stiffness of the main system, and Jtvd, Ktvd, 

and Ctvd represent the inertia, stiffness, and damping 
coefficient of the TVD, and M represents the amplitude 

of the excitation torque, and ω represents the excitation 

frequency, and t is time. 
 

 

Fig. 1: TVD and a SDOF system 

When the TVD parameters are under optimally 

tuned condition, the maximum value of the ratio of the 

vibration amplitude of the main system to its static 

deflection is        [11], where            

represents the ratio of Jtvd to Jeq. It can be observed that 

the maximum vibration amplitude of Jeq decreases for an 

increase in  . As a result, the lightweight of TVD runs 
counter to its good damping effect with a fixed main 

system, and obtaining the satisfied damping effects and 
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providing acceptable inertia values belong to the multi-

objective optimization. Studies regarding the multi-

objective optimization of passive DVAs started 

relatively late. Marano et al [12] achieved multi-

objective optimization by minimizing the maximum 

standard deviation of the acceleration of a SDOF and the 
failure probability of TMDs in damped MDOF systems. 

Yong et al [13] achieved multi-objective optimization by 

obtaining the good damping effect for the two-stage 

parallel DVAs, and the robustness of different mass ratio 

DVAs were compared [13]. 

Hosseini and Salehipoor [14] achieved multi-

objective optimization by minimizing the mass of the 

DVA and the structure failure probability of the main 

system through imperialist competitive algorithm. 

Borges et al [15] achieved multi-objective optimization 

by minimizing the maximum vibration amplitude of the 
main system and maximizing the attenuation bandwidth 

through line-up algorithm. Regarding the TVDs 

equipped on the vehicle driveshaft, studies of the multi-

objective optimization for damping effect and 

lightweight are relatively fewer. Our work is based on 

the severe torsional vibration of a modelled 2nd gear 

VPTS of a front-engine, rear-drive vehicle. Through the 

multi-objective optimization model, the parameters of 

the single-stage, two-stage parallel, two-stage series 

TVDs, and the models incorporating TVD and ECs are 

optimized by energy method. The torsional vibration 

amplitude and maximum torsional elastic potential 
energy (TEPE) of the VPTS are reduced, and the 

lightweight of the damping devices are realized. 

2. Torsional vibration model of a VPTS 

Due to the complicated structure of a VPTS, the 

lumped mass method was utilized to simplify the 

torsional vibration model, which means that a forced 

vibration model was established by taking the engine 

output torque as the excitation source. In accordance 

with the principle of simplification and equivalent 

calculation method [16], the inertia of each SDOF, the 

torsional stiffness, and damping coefficient beginning 

with the intermediate shaft of the gearbox were rendered 

equal to the engine crankshaft, depending on the 

transmission ratio of the gear wheels. Accordingly, a 39-

DOF torsional vibration model as shown in Fig. 2 was 

established. The definitions of the inertia terms for the 

different components of the VPTS represented by each 
SDOF are listed in Table 1. The torsional vibration 

equation of the VPTS is given by, 

  J C K T       (1) 

Where θ,  , and   represent the angular displacement, 

angular velocity and angular acceleration 39×1 column 

vectors, respectively. T represents the column vector of 

the excitation torque and J, C and K represent the 39×39 

inertia matrix, the torsional damping matrix and the 

torsional stiffness matrix respectively. 

3. Forced vibration and free vibration of 

the torsional vibration model of a VPTS 

The output torque can be presented using Fourier series 

expansion to determine each harmonic excitation torque, 

and the harmonic superposition method is employed to 

solve the vibration amplitude of each SDOF. As shown 

in Fig. 3, the vibration amplitudes at the input ends of 

the gearbox, driveshaft, and rear axle all peak at an 
engine speed of about 1500 rpm, which represents a 

resonance phenomenon in the VPTS. This phenomenon 

can be reduced by a TVD. Prior to optimization, a 

natural characteristics analysis is firstly conducted for 

the torsional vibration model. Here, an undamped free 

vibration model is generally utilized to simplify the 

calculation [17], 

0 J K       (2) 

The characteristic equation is solved to obtain the third 

order natural frequency (50.58Hz) corresponding to the 

resonance rotation speed at about 1500rpm. The 

corresponding mode shape is shown in Fig. 4, which 

indicates that the torsional vibration of the complete 

engine crankshaft (DOF J1-J15) is unremarkable. 

 

 

Fig. 2: VPTS torsional vibration model 
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Table 1: Definitions of the different DOF 

Symbol Definition 

J1 Inertia of the torsion damper at the free end of the engine crankshaft 

J2, J3, J13, and J14 Inertia values of the stepped shafts 

J4, J6, J8, J10, and J12 Inertia values of the main journal 

J5, J7, J9, and J11 Inertia values of the 4 cylinder crank-connecting rod mechanisms 

J15 Inertia values of the flywheel and driving part of the clutch 

J16, J17, J18, and J19 Inertia values of the driven part of the clutch and input shaft of the gearbox  

J20 and J21 Inertia values of the intermediate shaft of the gearbox 

J22, J23, J24, and J25 Inertia values of the output shaft of the gearbox 

J26 Inertia of the front universal joint and internal spline 

J27 and J28 Inertia of the front half shaft and intermediate spline 

J29 and J33 Inertia of the intermediate and rear universal joint 

J30, J31, J32 Inertia values of the rear half shaft 

J34 and J35 Inertia values of the main reducer driving and driven bevel gear 

J36 Inertia of the differential mechanism 

J37 and J38 Inertia values of the two half-axles 

J39 Equivalent inertia of wheels and the entire vehicle 

Ki (i = 1,2,…,38) Torsional stiffness between various DOF 

K39 Torsional stiffness of tires 

Ci (i = 1,2,…,38) Torsional damping coefficient between various DOF 

C39 Torsional damping coefficient of tires 

  
 ,   

 ,   
 , and    

  External damping coefficients of the 4 cylinder piston crank-connecting rod mechanisms 
 

 

Fig. 3: Amplitudes of different DOF 

 

Fig. 4: Third order mode shape of the VPTS 

The clutch (DOF J15 and J16) undergoes large 

deformation due to its low torsional stiffness, which is 

much less than that of the other shaft segments, the 

vibration enlarges continuously as the transmission 

power passes through the input shaft (DOF J16–J19), 

intermediate shaft (DOF J20 and J21), and output shaft 

(DOF J22–J25) of the gearbox, the complete driveshaft 

(DOF J26–J33) and main reducer (DOF J34 and J35) vibrate 

increasingly violently, and the vibration decreases 

rapidly as the transmission power passes through the 

differential mechanism (SDOF J36), half-axles (DOF J37 

and J38), and reaches the tires (SDOF J39). 

In a MDOF system, the SDOF having the largest 

amplitude is equipped with a TVD to absorb the greatest 

amount of vibration energy. According to the vibration 

characteristics of the model VPTS and actual situations, 
a TVD can be optionally equipped at the back end 

(SDOF J32) of the driveshaft. The mechanical model is 

shown in Fig. 5, where     
 ,     

 , and     
  represent the 

equivalent inertia, torsional stiffness, and torsional 

damping coefficient of the crankshaft for the TVD, 

respectively. Then, the torsional vibration equation is 

established as follows, 

40 40 40 1 40 40 40 1 40 40 40 1 40 1        J C K T     (3) 
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Fig. 5: Mechanical model of the matched MDOF system including 

a single-stage TVD 

For enhancing the damping effect, a single-stage 

TVD may be converted into a two-stage parallel or series 

TVD, the mechanical model of the matched MDOF 

system is shown in Fig. 6, where '

1tvdJ , '

2tvdJ , '

1tvdK , '

2tvdk , 
'

1tvdC  and '

2tvdC  represent the equivalent inertias, torsional 

stiffness, and torsional damping coefficients of the 
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crankshaft for the TVDs, respectively. Then, the 

torsional vibration equation is established as follows, 

,41 41 ,41 41 ,41 41 41 1     I I IJ C K T  
 

,41 41 ,41 41 ,41 41 41 1     II II IIJ C K T  
  (4) 
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(a) Two-stage parallel TVD 
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(b) Two-stage series TVD 

Fig. 6: Mechanical models of the matched MDOF system including 

a two-stage TVD 

4. Optimization of parameters for single-

stage, 2-stage parallel and series TVDs 

4.1. Optimization model of single-stage TVD 

In this model, the inertia, torsional stiffness, and 

torsional damping coefficient of the TVD are taken as 

design variables. As the constraint condition, the 

torsional vibration torque of each shaft section in the 

torsional vibration system should be less than the 

corresponding allowable torque and the vibration 
amplitudes of the DOFs in the rear axle should be less 

than 0.9. As the boundary condition, the damping 
coefficient of rubber is set in range of 0.05-0.4Nms/rad. 

Because the torsional vibration of the rear axle 

dominates the overall NVH performance, the objective 

function seeks to minimize the maximum TEPE of the 

rear axle (beginning with component i = 33) and the 

inertia value of equipped TVD. The optimization model 

is as follows, 
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min ( , , ) max( ), 1,2, ,
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
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tvd tvd tvd

E K C J F j m

J

s t G K C J

 (5) 

Where Fm is the maximum TEPE of the rear axle when 

     and E is the maximum TEPE of the rear axle. 

We also note that the corresponding frequency ω in the 
2nd gear common speed range between 900-2000rpm was 

divided into m-1 equal parts, i.e., ω1, ω2, …, ωm, which 

represents an even number of points. Tm is the time 

period of the torsional vibration system when the 

crankshaft completes two revolutions during a single 

excitation period. The 0.5th order excitation has the 

largest time period in multiple frequency excitations. 

Therefore             ). Finally, G(Ktvd,Ctvd) 

represents the inequality constraints. The responses of 

various-order excitation torques are superimposed to 
obtain the response of each SDOF based on the linear 

superposition principle: 

( )

40 1

0.5








  ni n t

n

n

X e
      (6) 

Where Xn represents the column vector of the vibration 

amplitudes subjected to the nth order excitation torque of 

the torsional vibration system. The corresponding 

steady-state solution of vibration responses is given by 

the imaginary part of Eqn. (6). The classical optimization 

method such as linear weighted sum method can be 

employed to simplify the calculation. The multi-

objective optimization may be converted into single-

objective optimization using, 

1 2min max( )j tvdF J     (7) 

To realize the lightweight design of TVD, ε2 should be 

greatly larger than ε1, and the TVD can reach the 
satisfactory damping effect with a least inertia. 

4.2. Optimization model of 2-stage parallel and 

series TVDs 

For the optimization of parameters for two-stage parallel 

and series TVDs, the energy function of the rear axle can 

be obtained based on Eqn. (4). The objective function is 

as follows, 

1 1

2 2

1 2

1 2

, ,

min , , max( ), 1,2, ,

,

min

 
 

  
 
 



tvd tvd

tvd tvd j

tvd tvd

tvd tvd

K C

E K C F j m

J J

J J

 (8) 

Where Jtvd1 and Jtvd2, Ktvd1, Ktvd2, Ctvd1 and Ctvd2 represent 

the inertias, torsional stiffness, and torsional damping 

coefficients of the two-stage TVDs, respectively. 

4.3. Optimization and analysis of results 

It must be noted that, the results of presented TVD 

parameter local optimization are strongly correlated to 

the initial values selected, and thus a global optimization 

solver must be employed. The optimized results are 

listed in Table 2. As for the single-stage TVD, the rubber 

cannot provide the expected damping, and the dissipated 

energy is very limited, so that only a very large inertia 

value TVD can suppress the vibration energy. However, 

it is inappropriate to equip the TVD with such large 
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inertia value at the back end of the driveshaft. In 

contrast, the expected damping coefficients of two-stage 

parallel and series TVDs are more or less than the 

expected damping coefficient of single-stage TVD. 

Thus, the more vibration energy can be dissipated by 

two-stage TVDs, which need less than half of the inertia 
value of the single-stage TVD to achieve the same 

evaluation criterion of damping effect. The parameters in 

Table 2 were substituted into Eqns. (3) and (4), and the 

calculated vibration amplitudes at the input end of the 

rear axle are shown in Fig. 7. The amplitude of the 

VPTS employing single-stage or two-stage TVDs are 

further reduced between 900-1800rpm and increases 

obviously between 800-860rpm compared with the 

amplitude with no TVD. Because the 800-900rpm are 

generally in first gear, it is reasonable to transfer the 

vibration energy to uncommonly used speed region. 
Otherwise, the more large inertia values are needed if 

800-2000rpm is set as the optimization range. 
 

 

Fig. 7: Vibration amplitudes at the input end of rear axle 

Table 2: Optimized results  

VPTS\TVD Single-stage 2-stage parallel  2-stage series  

Ktvd1 (Nm/rad) 1642.5031 238.4083 741.4088 

Ctvd1 (Nms/rad) 0.4 0.3456 0.0803 

Ktvd2 (Nm/rad) N/A 502.3032 280.6902 

Ctvd2 (Nms/rad) N/A 0.2552 0.4 

Jtvd1 (kgm2) 0.0351 0.0030 0.0107 

Jtvd1+ Jtvd2 (kgm2) N/A 0.0165 0.0151 

5. Parameters optimization for ECs & TVD 

To further reduce the weight of the TVD, the TVD and 

EC can be both considered to be equipped on the 

driveshaft. Thus, the parameters of ECs and TVD can be 

optimized with full play given to the isolation effect of 

EC and the vibration absorption effect of TVD. We had 

already investigated the damping effects of different 

structural schemes combining TVD and ECs on the 

driveshaft, the optimal installed position of EC should be 
at the front of the front half shaft, and the EC-TVD 

coupling shock absorber which produces the effects of 

both EC and TVD should be at back ends of the rear half 

shaft [18]. The structure of EC-TCD is depicted in Fig. 

8, body 1 is inertia ring connected to rubber 4 by 

vulcanization, body 2 is a lightweight hub connecting 

rubber 4 and EC 3, rubber 4 and EC 3 are not connected 

to each other because of the gap. The mechanical model 

of the matched VPTS including an EC and an EC-TVD 

is shown in Fig. 9, where '

rK  and '

rC  represent the 

equivalent torsional stiffness and torsional damping 

coefficients of the crankshaft for the EC. It must be 

noted that side A should be faced forward and side B 

should be faced backward. 
 

 Side A

Side B

1 2 3 4

 

Fig. 8: Schematic diagram of EC-TVD 

5.2. Matching of two-stage TVDs and EC 

Since a single-stage TVD and an EC can be connected 

together into a coupling shock absorber, an EC-two-

stage TVD coupling shock absorber combines an EC and 

a two-stage parallel or series TVD may be considered. 

The structure of EC-two-stage TVD is depicted in Fig. 

10. This coupling shock absorber requires additional 
radical space, which introduces installation challenges. 

The EC-TVD in Fig. 9 can be replaced by EC-two-stage 

TVD if the condition is satisfied. The mechanical model 

of the matched VPTS including an EC and an EC-two-

stage TVD is shown in Fig. 11. 
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Fig. 9: Schematic diagram of installed position of EC and EC-TVD 
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(a) Elastic coupling coupled to two-stage series TVD 

 

(b) Elastic coupling coupled to two-stage parallel TVD 

Fig. 10: Schematic diagrams of EC coupled to two-stage TVD 

 

(a) Two-stage parallel TVD and EC 

 

(b) Two-stage series TVD and EC 

Fig. 11: Schematic diagrams of installed position of EC and EC-two-stage TVD 

5.3. Optimization model 

For the optimization of parameters for single-stage TVD 

and ECs shown in Fig. 9, the objective function is as 

follows, 

1 2

, ,
min max( ), 1,2, ,

, ,

min

 
  

 

tvd tvd

j

tvd r r

tvd

K C
E F j m

J K K

J

 (9) 

Here, Kr1 is the torsional stiffness of the front EC, Kr2 is 

the torsional stiffness of the rear EC. Considering the 

actual situation, optimization range of EC is set from 

1500 Nm/rad to 3000 Nm/rad. The damping of rubber 

EC is internal damping, which is directly proportional to 

torsional stiffness of rubber, and shows different values 
in different excitation frequency. The value of damping 

coefficients can be expressed as [19], 

1 1 2 2(2 ), (2 ) r r r rC K C K                  (10) 

Here, ψ is the ratio of dissipated energy to maximum 
TEPE of the rubber during a period of oscillation (i.e., 

      ). For the optimization of parameters for 2-

stage TVDs and ECs shown in Fig. 11, the objective 

function (j = 1,2,…m) is, 

1 1 2 2

1 2 1 2

1 2

, , , ,
min max( )

, , ,

min
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5.4. Optimization and analysis of results 

Through calculation, the results are shown in Table 3. 

Compared with Table 2, the optimal stiffness of the 

TVDs decrease in a certain range, and the stiffness of the 

ECs are all at lower boundary values. The inertias of the 

single-stage TVD, the 2-stage parallel and series TVDs 

decrease by 37.08%, 43.68% and 44.84%, respectively. 

The parameters in Table 3 were substituted into Eqns. 

(3) and (4), and the calculated vibration amplitudes at the 
input end of the rear axle are shown in Fig. 12. The 

amplitude of the VPTS employing TVD and EC are 

reduced considerably between 800-900rpm, and no 

obvious changes occur between 900-2000rpm. 

Table 3: Optimized results of the single-stage, 2-stage parallel and 

2-stage series TVDs and ECs 

VPTS\TVD Single-stage 2-stage parallel 2-stage series 

Ktvd1 (Nm/rad) 1198.1151 172.8007 434.0293 

Ctvd1 (Nms/rad) 0.4 0.0851 0.0521 

Ktvd2 (Nm/rad) N/A 292.0315 152.1023 

Ctvd2 (Nms/rad) N/A 0.4 0.2887 

Kr1 (Nm/rad) 1500 1500 1500 

Kr2 (Nm/rad) 1500 1500 1500 

Jtvd1 (kgm2) 0.0221 0.0046 0.0056 

Jtvd1+ Jtvd2 (kgm2) N/A 0.0093 0.0083 

 

 

Fig. 12: Vibration amplitudes at the input end of rear axle 

6. Conclusions 

By considering the damping effects and lightweight 

design of the TVDs, we transferred this problem into the 

single-objective optimization based on the linear 

weighted sum method for optimizing the parameters of 

single-stage, 2-stage parallel, 2-stage series TVDs, and 

the models combine ECs and TVD. The main 

conclusions are as follows, 

 The 2-stage series TVD has the lightweight 
advantage over the 2-stage parallel TVD. 

 The models combine ECs and TVD have 

lightweight advantage over the corresponding TVD 

models, and provided a better damping effect in the 

800-900rpm range. 

 The energy method can make adjustments to the 

optimization frequency range as per practical 

needs, and provides good damping effect in the 

common speed region with smaller inertia values. 
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