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ABSTRACT: 

Because of the difference of working principles and arrangements of endurance braking systems, including engine 

brake, exhaust brake and eddy current retarder, it is difficult to match braking manually more than two types of 
endurance braking systems working simultaneously on long downhill. Meanwhile, manipulating control on different 

slopes will distract the driver's attention and cause driving fatigue. Aiming at this problem, the endurance brake 

classification control strategy is proposed, setting the deceleration, road slope and the difference of current speed & 

target speed as an input and the endurance brake classification as an output variable. Considering velocity variation is 

related to these factors with strong nonlinear characteristics, Generalized Growth and Pruning Radial Basis Function 

neural network control is used to estimate the input deceleration. Tests were conducted to verify the accuracy of 

simulation model. Variable slopes are researched through simulation method. The results show that the system 

designed to achieve automatic matching control can effectively decelerate and keep the truck running stably. 
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1. Introduction 

Using service braking system frequently on long 

downhill often leads to heat recession. To solve this 

problem, heavy duty trucks are equipped with endurance 
braking systems including engine brake, Jacobs brake, 

exhaust brake, hydraulic retarder and eddy current 

retarder. The braking power is almost proportional to the 

engine power. However, increasing braking force by the 

means of enhancing engine power will lead to rising 

costs and decreasing fuel efficiency, despite of engine 

brake relying on the throttle valve, exhaust brake relying 

on the butterfly valve, eddy current retarder relying on 

the coil turns and hydraulic retarder determined by liquid 

filling rate. At the same time, the operating mode varies 

the principle. Running on downhill, the driver not only 

manipulates the steering system but also operates the 
endurance braking systems according to the speed and 

slopes. In this way, the intensity of the driver's labour is 

enhanced greatly; the driving safety has dropped 

obviously. Therefore, the matter to achieve a coordinated 

control of endurance braking systems is one of the key 

issues in field of braking safety on the long downhill for 

heavy duty truck. 

Ma [1] researched the retarder brake on flat road and 

designed a neural network control system utilizing the 

service brake and retarder brake to reduce the braking 

distance. Zhao [1] researched the fuzzy control strategy 
of service brake and retarder on long downhill. Dong [3] 

studied the engine brake control through CVT system. 

Wu [4] analyzed the influence of eddy current retarder to 

the braking performance of a bus. Yu [5] researched the 

combined effect of engine brake, exhaust brake and 

retarder under fixed gear by a designed fuzzy controller. 

Based on above researches, the endurance brake 

classification control strategy of a heavy duty truck is 

proposed, which controls the output endurance braking 

force according to the demanding braking force during 
the deceleration stage and relative constant speed stage. 

In consideration of the nonlinear relationship among 

deceleration, slope and the difference between current 

speed and target speed, the Generalized Growth and 

Pruning Radial Basis Function (GGAP-RBF) neural 

network is used. The control strategy is verified by 

simulation and road tests, and achieves preferable effect 

under variable slopes condition. 

2. Classification strategy of endurance 

braking systems 

Road tests are conducted to obtain the characteristic 

models based on vehicle dynamics theory, namely the 

relationship between braking torque and speed varying 

with the gears. As to engine brake and exhaust brake, the 

function relationship is given by, 

2

_ _
    

b con i i i i
T C n D n E    (1) 

Where C1, D1, E1 and C2, D2, E2 are coefficients of 

engine brake and exhaust brake torque characteristic 
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model as given in Table 1. Tb_con_i is the braking torque. 

For retarder, the function is given by [1], 

4 3 2

_ _ 3 3 3 3 33       
b con a a a a

T A u u C u D u EB  (2) 

Where A3, B3, C3, D3, E3 are the coefficients of retarder 

brake torque characteristic model as given in Table 2. ua 

is the vehicle speed. 

Table 1: Coefficients of engine brake and exhaust brake torque 

characteristic models 

Parameter Ci Di Ei 

Engine brake -1.00×10-4 0.45 -75.04 

Exhaust brake -1.00×10-4 0.53 -255.25 

Table 2: Coefficients of retarder torque characteristic model 

Mode I II III IV 

Ai -1.13×10-10 -1.53×10-10 -2.93×10-10 -3.94×10-10 

Bi 7.02×10-7 9.42×10-7 1.70×10-6 2.27×10-3 

Ci -1.59×10-3 -2.14×10-3 -3.67×10-3 -4.89×10-3 

Di 1.59 2.17 3.56 4.74 

Ei -146.97 -86.62 -249.88 -435.81 

 

Distinguishing from the service braking system, 

endurance braking torque transmit relying on power train 

system. The braking force acting on the wheel can be 

given by, 

_ _ _ _ 0b con ij b con i g TF T i i r    (3) 

Where, i is the form of endurance braking system, j is 

the gears or modes. Fb_con_ij is the output braking force, ig 

is transmission ratio, i0 is the final drive ratio, ηt is the 

mechanical efficiency and r is wheel rolling radius. As 

for engine brake and retarder are working 

simultaneously, the braking force on the wheel can be 

obtained using,  

_ _ _ _1 0 _ _ 3 0= +b con ij b con j g t b con j tF T i i r T i r    (4) 

Similarly, the braking force on the wheel can be arrived 

as exhaust brake and retarder working using,  

_ _ _ _ 2 0 _ _ 3 0= +b con ij b con j g t b con j tF T i i r T i r    (5) 

The matching work of 3 endurance braking systems form 

14 ways, corresponding to 14 classifications as follows: 

1 - exhaust brake; 2 - engine brake; 3 - retarder I; 4 - 

retarder II; 5 - retarder III; 6 - retarder IV; 7 - exhaust 

brake + retarder I; 7 - exhaust brake + retarder I; 8 - 

exhaust brake + retarder II; 9 - exhaust brake + retarder 

III; 10 - exhaust brake + retarder IV; 11 - engine brake + 

retarder I; 12 - engine brake + retarder II; 13 - engine 

brake + retarder III; 14 - engine brake + retarder IV.  

The output braking force curves are presented in 

Figs. 1 to 4 for 5th, 6th, 7th and 8th gear respectively. The 
output endurance braking force increases as shifting to 

lower gears and for increased speed. The output braking 

force is smaller while engine brake, exhaust brake or 

retard I are working alone. Maximum braking force 

achieved by the way of engine brake and retarder IV 

working together. For 5
th

 gear, the braking force varies 

from 822N to 24790N, corresponding to a speed of 

between 11km/h to 31km/h. For 6th gear, the braking 

force range and speed range are 822N to 21997N and 

14km/h to 42km/h, respectively. For 7th gear, the braking 

force range and speed range are 822N to 18141N and 
20km/h to 58km/h. For 8th gear, the braking force range 

and speed range are 499N to 17506N and 27km/h to 

78km/h, respectively. 
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Fig. 1: Output braking force curve of 5
th

 gear 
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Fig. 2: Output braking force curve of 6
th

 gear 
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Fig. 3: Output braking force curve of 7
th

 gear 
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Fig. 4: Output braking force curve of 8
th

 gear 

3. Classification control strategy based on 

GGAP-RBF neural network 

3.1.  Vehicle dynamics model 

Suffering the gravity, the truck has a tendency to 

accelerate on downhill. Considering safety and stability, 

it is necessary to provide a brake force. Therefore, the 
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longitudinal dynamic Eqn. (1) can be derived by force 

analysis diagram from Fig. 5 as follows, 

+   t i f w jF F F F F     (6) 

Where Fi is gravity component along road, Fi = mgi. Ft, 

Ff, Fj and Fw are the driving force, rolling resistance 
force, acceleration resistance force and air resistance 

force respectively. The endurance braking working, Eqn. 

(6) can be rearranged as follows, 

_+ + i f w b con jF F F F F     (7) 

_ _ ( )   b con ij f w

du
F mgi F F m

dt
   (8) 

Where δ is the rotational mass conversion factor and m is 

the weight of the test truck.
f w

F F  was obtained from 

tests [8], 
2

0.37 7.50 3216.14
f w a a

F F u u    . Eqn. (8) can 

be further simplified as follows, 

( , , ) ( ( ) ( ))   a f a w a

du
F a u i mgi F u F u m

dt
  (9) 

The demand of the brake required depends on the slope, 

driving speed and target deceleration on downhill. 
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Fig. 5: Force analysis diagram of heavy duty truck on downhill 

3.2.  Classification control strategy of endurance 

braking systems 

In order to adapt to variable slope section, the driver has 

to manipulate the endurance braking system frequently. 

At the same time, the driver is handling the steering 

system and shifts the gear depending on road condition. 

These processes divert the driver's attention and increase 

fatigue driving probability. Considering those aspects, 

this paper proposed a classification control strategy 

which can realize an intelligent matching control. As 
shown in Fig. 6, in normal deceleration process, the 

deceleration is variable, that is, the demand brake force 

varies with the speed. Although given endurance braking 

force decreases with the decrease of speed, that is less 

than demand value. Under these circumstances, we need 

to manipulate another endurance braking system. As 

shown in Eqn. (9), factors influencing the demand 

braking force are slope (i), speed (ua) and deceleration 

(a). In order to realize a control strategy, these three 

factors are selected as input variables and expected speed 

(uae) as control objective and the difference of expected 

speed (uae) and current speed (ua) as control variable. 
The implemented control strategy is shown in Fig. 7. 

When |ua-uae|≥x (x is a threshold,), control truck 

deceleration, and deceleration depending on i, ua and a; 

When |ua-uae|<x, judging the truck speed in a stable state, 

the default deceleration is 0. In the two states, the 

endurance braking level is determined by |F(a,ua,i)-

Fb_con_ij(ua)|min. 
 

 

Fig. 6: The demand braking force at different classifications 
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Fig. 7: Flow chart of the control strategy 

3.3. Deceleration estimation based on GGAP-RBF 

neural network 

The output deceleration is determined by road condition, 

truck state, speed, target speed, etc. It is really hard to 

establish exact mathematical model considering these 

factors given their strong nonlinear relationship. 

Focusing on these issues, this paper adopts the neural 

network model to predict the deceleration. The 

advantage of the neural network is no need to establish 

an accurate model of input-output relations, perform well 
in strong nonlinear mapping ability, self-learning ability 

and good adaptability. However, the traditional back 

propagation neural network is easy to fall into local 

optimum, and network training takes too much time. For 

improving the global approximation ability, convergence 

speed and generalization ability of the neural network 

model, the RBF neural network is used to establish the 

model of braking deceleration prediction. To solve the 

problem that inefficient neurons occupy the network 

resources and affect the computing time, especially for 

the large sample size. The methods of removing 
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inefficient neurons in each training process and 

simplifying the radial basis function network structure 

under the condition of large data capacity through 

GGAP-RBF neural network [2] are used in this paper. 

3.3.1. RBF neural network 

RBF neural network is a kind of local perceptron 

network, which is a two layer forward network with a 

single hidden layer, including input layer, hidden layer 

and output layer [2], and the topological structure can be 

seen in Fig. 8. The signal is transmitted to the hidden 

layer by the input layer node, the nonlinear mapping in 
this process. It has the advantages of strong global 

approximation ability, fast convergence, strong 

generalization ability and good classification ability [2]. 

The input and output of RBF neural network is described 

as (xi, yi)[2], where i = 1, 2, 3, ..., n. xi is input vector 

with M dimension and yi is the output value. The group i 

can be described as, 

{( , ) : , }    i M

i i i ix y x D R y R               (10) 

Where RM and R are M and 1 dimensional Euclidean 

space, respectively; D is the subset of RM. The output 

can be described as, 

1

( ) ( )
k

k kf x R x                 (11) 

Where, k is the number of neurons. In this paper, the 

Gauss function is chosen as the activation function, 

therefore, the hidden layer neuron function is given by, 
2 2( / )

( ) ( / )
 

   k i kw x

k i k i kR x Radbas w x e


         (12) 

Where wk is the radial basis of neuron k; σk is radial 

basis function width of neuron k. According to previous 

analysis of deceleration process, input vector of RBF can 

be described as, T( , , )i a ax u u i  . The output of the 

neural network is obtained as,  
2

2( / )

0
1

( )
 

 
ik k

k
w x

i ka x e


                 (13) 

Where, the deviation ω0 = 0.3; ωk is the weight of neuron 

k; a (xi) is the deceleration predicted. 
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Fig. 8: Topological structure of RBF neural network 

3.3.2. Growth and pruning strategies 

The number of hidden layer neurons is usually equal to 
the number of samples in traditional neural network. The 

complexity of the network increases with the increase of 

the training samples, leading to the deterioration of 

network performance and seriously affects the 

computing performance. In this paper, the resource 

growth strategy is used to determine whether we need to 

add new neurons to adapt to new training samples. After 

adding new hidden layer neurons, the decision method of 

network resource allocation is given by, 

min( )

  


  

i ir i

i i i

x w

e y f x e


                (14) 

Where 
( 1)i

i ie y f    is the priori estimated error of the 

RBF network; wiy is the central parameter of a neuron 

that has the shortest norm distance with neuron i; εi and 

emin are thresholds. εi is the distance threshold between 

new hidden layer neuron and current hidden layer 

neuron. emin is accuracy threshold of output value. In 

order to control the network scale and improve the 

network performance, the most effective way is to 

remove the neurons that have overlapping functions and 

have limited contribution to the prediction accuracy [3]. 

Therefore, pruning strategy is used to delete the 
inefficient neurons, which can improve the computing 

efficiency by simplifying the network structure [4]. The 

overall contribution rate of the network is the criterion to 

decide whether neuron k is inefficient using,  

min( ) sigE k e                  (15) 

3.4. Training of GGAP-RBF neural network 

In order to train the GGAP-RBF neural network, road 

tests on different slopes were conducted. RLVB2SX 

VGPS speed sensor and SCA61T angle sensor were used 

in the tests. Since the braking habits of different drivers 
vary widely, 20 drivers were selected to participate in 

3000 tests with different speeds and slopes. Those tests 

provide sufficient samples for training GGAP-RBF 

neural network model. Xi'an-Hanzhong section K76-

K118 of Beijing-Kunming Expressway is chosen as test 

section, which can meet the demand of road slope and 

driving speed. The slopes of test section are 2.14%, 

2.54% and 4.60%. The speed ranges are 20 - 40 km/h, 40 

- 60km/h, 60 - 80km/h. The experimental data are used 

as the training samples of neural network and the 

required deceleration can be predicted. Test results under 

different operating conditions can be seen in Figs. 9 - 11. 
In Fig. 9, the deceleration range is from 0.01 m/s2 to 0.45 

m/s2.The deceleration is relatively larger at the beginning 

and gradually decreased. In Fig. 10, the range is from 

0.03 m/s2 to 0.28 m/s2. The deceleration range in Fig. 11 

is from 0.10 m/s2 to 0.42 m/s2. In summary, training 

sample of the deceleration of a heavy duty truck 

decreases with the increase of slope. The deceleration 

decreases with the decrease of speed. 
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Fig. 9: Training sample in the range of 80km/h to 60km/h 
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Fig. 10: Training sample in the range of 60km/h to 40km/h 
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Fig. 11: Training sample in the range of 40km/h to 20km/h. 

4. Simulation and verification 

In order to realize the control strategy, establish a 

simulation model based on Matlab/Simulink is 
established and the accuracy of the model is verified by 

road tests. The simulation model, as shown in Fig. 12, 

includes vehicle module and prediction module of 

demand deceleration based on GGAP-RBF neural 

network, classification control module of endurance 

braking systems and velocity classification module. 

Road tests were conducted to verify the classification 

control strategy of endurance braking systems. In the 

tests, experienced driver were driving on the test section, 

the slope is 4.20% by setting the initial speed and the 

target speed as 78km/h and 60km/h, respectively. The 

test and simulation results are shown in Figs. 13 and 14. 

As shown in Fig. 13, comparing the curve of the velocity 

variation, the simulation’s velocity varies in 

synchronisation with the test results within 2km/h 

threshold in decelerating and stable stage. During the 

process, endurance brake classification is changed 3 

times in the road test and it is shifted 2 times in the 

simulation model. The control strategy in this paper can 
effectively control the truck’s velocity and reduce the 

driving fatigue under the premise of driving safety in the 

same situation. 
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Fig. 13: Comparison of driving speed 
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Fig. 14: Comparison of matching work 
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Fig. 12: Simulation model of classification control strategy 
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The road slopes varies randomly while heavy duty 

truck is driving on downhill. Thus, for further studying 

the applicability of the control strategy proposed, 

simulation research under variable slope conditions was 

conducted based on the road parameters of Xi'an-

Hanzhong Expressway (from K44 + 140 to K56 + 550)  

as given in Table 3. In Fig. 15, first 100 meters, the truck 

is decelerating smoothly from 78km/h to 60km/h; 

subsequently, the velocity fluctuates within the range of 
60km/h - 62km/h within the 2km/h threshold in stable 

state. The simulation has achieved an ideal control result. 

The endurance brake classifications as seen from Fig. 16 

are matching accurately. The initial speed and expected 

speed were set to 78km/h and 60km/h; the distance is set 

to 13.16km. The simulation result shows that the control 

strategy proposed in this paper realized the endurance 

brake classification control, and it can adapt to the 

conditions that road slopes varies randomly. 

Table 3: Road parameters of Xi'an-Hanzhong Expressway 

# Pile No. 
Slope 

(%) 

Len. 

(m) 
# Pile No. 

Slope 

(%) 

Len. 

(m) 

1 K44+144 2.80 780 11 K52+200 2.60 300 

2 K44+920 3.70 830 12 K52+500 4.50 790 

3 K45+750 2.90 950 13 K53+290 3.00 410 

4 K46+700 1.65 600 14 K53+700 4.50 650 

5 K47+300 2.13 1000 15 K54+350 2.80 350 

6 K48+300 2.50 750 16 K54+700 4.30 650 

7 K49+080 4.20 820 17 K55+350 2.80 350 

8 K49+900 2.00 600 18 K55+700 4.70 500 

9 K50+500 2.58 1120 19 K56+200 3.00 350 

10 K51+620 4.50 580 20 K56+550 5.00 750 
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Fig. 15: The curve of the velocity variation 
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Fig. 16: Changing of the endurance brake classification 

5.  Conclusion 

The classification control strategy of endurance braking 

systems based on the GGAP-RBF neural network 

proposed in this paper is an effective method to realize 

matching control for endurance braking systems. It can 

ensure that the truck decelerates smoothly and keeps it 

running stably. It is of great significance to improve 

vehicle safety for truck on long downgrade roads. 
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