Open Access Open Access  Restricted Access Subscription Access

Fuzzy-PI Based Sliding Mode Control to Management of Hybrid Energy System Grid Connected


Affiliations
1 LAADI Laboratory, Faculty of Science and Technology, University of Djelfa, Algeria
2 Energy Engineering and Computer Engineering (L2GEGI) Laboratory, University of Tiaret, BP P 78 Zaâroura, 14000, Tiaret, Algeria
3 Centre de Développement des Energies Renouvelables, Algiers, Algeria
 

This paper presents an optimized advanced control technique for a grid-connected hybrid energy system (HES) based on a solid oxide fuel cell (SOFC) and a photovoltaic panel (PV) in a distributed power generation system. A classical full sliding mode control and a Fuzzy-PI sliding mode are proposed for a system operation and power management mode (UPC mode). The latter technique which is based on a combination of a classical controller and fuzzy artificial intelligence system is utilized at power and current adjustment stage. The fuzzy system gave the optimal gain values to the PI controller to get a better performance. The obtained results show that the optimized sliding mode control (Fuzzy-PI) is better than the classical sliding one in terms of power, response time, and robustness against disturbances in production and consumption energy.

Keywords

Hybrid Energetic Systems, Solid Oxide Fuel Cell (SOFC), Photovoltaic Panel (PV), Sliding Mode Control, Fuzzy-PI Control, Electrical Grid.
User
Notifications
Font Size

  • B. Multon et H. Ben Ahmed, « Le stockage stationnaire d’énergie électrique : pourquoi et comment », Revue 3E.I, n°48, pp. 18-29, mars 2007.
  • D. Lu, « Conception et contrôle d’un générateur PV actif à stockage intégré Application à l’agrégation de producteurs-consommateurs dans le cadre d’un micro réseau intelligent urbain », thèse de doctorat, Ecole centrale de Lille, 2010.
  • G. Cimuca, « Système inertiel de stockage d’énergie associé à des générateurs éoliens », thèse de doctorat, université de Lille, 2004.
  • G. Cimuca, S. Breban, M. Radulescu, C. Saudemont, B. Robyns, « Design and control strategies of an induction machine based fywheel energy storage system associated to a variable speed wind generator. », Energy Convers IEEE Trans, 25:526–34, 2010.
  • A. Helal, R. El-Mohr y H. Eldosouki, “Optimal Design of Hybrid Renewable Energy System for Electrification of a Remote Village in Egypt,”Arab Academy for Sciences & Technology and Maritime Transport Alexandria.
  • S. Moussa, A. Kaabèche et M. Belhamel article Rev. Energ. Ren. : ‘’ Evaluation des Performances d’un Système Hybride de Production d’Electricité - Fourniture d’énergie électrique sans interruption au moyen d’un système hybride (solaire, éolien, et diesel) totalement autonome ‘’ Valorisation (1999) 247-250.
  • A. Chih et C. Hua, « Charge and Discharge Characteristics of Lead-Acid Battery and LiFePO4 Battery », International Power Electronics Conference, 2010.
  • S. A. Belfedhal, E.M. Berkouk, Y. Messlem, « Analysis of grid connected hybrid renewable energy system », Journal of Renewable and Sustainable Energy, doi.org/ 10.1063/ Janv 2019.
  • BENGOURINA Mohamed Rida, “Commande avancée d’un filtre actif parallèle en utilisant une approche métaheuristique : application aux systèmes photovoltaïques interconnectes au reseau”. these doctorat en science, 2020.
  • S.J. Lee, J.K. Kang and S.K. Sul, ‘A New Phase Detecting Method for Power Conversion Systems Considering Distorted Conditions in Power System’, In Proceedings of Industry Applications Conference, 34 Annual Meeting, Vol. 4, 1999.
  • S.M. Silva, L.N. Arruda, and B.J. Cardoso Filho, ‘Wide Bandwidth Single and ThreePhase PLL Structures for Utility Connected Systems’, In Proceedings of European Power Electronics, 2001.
  • C. Zuo, M. Liu, M. Liu , “Solid Oxide Fuel Cells, Sol-Gel Processing for Conventional and Alternative Energy,” Chapter 2, pp.7-36, Springer Science, 2012.
  • S. Udroiu, ‘‘Développement de Piles à Combustible de type SOFC en Technologie Planaire Couches Epaisses. Application à l'Etude de Dispositifs en Configuration Monochambre ’’. Thèse de Doctorat Ecole Nationale Sup.des Mines de Saint-Étienne, 2009.
  • S. Abdeslem, « Filtrage actif et contrôle de puissances: application aux systèmes photovoltaïques interconnectés au réseau ». Mémoire de magister université Ferhat Abbas – Sétif UFAS (Algérie) 2012.
  • A. Goetzberger, V. Hoffman, U.Volker, “Photovoltaic Solar Energy Generation”, Optical Sciences, Springer, 2005.
  • I. Vechiu, “ Modélisation et Analyse de l'Intégration des Energies Renouvelables dans un Réseau Autonome , ” Thèse de doctorat, Université du Havre, 200.
  • M. Sahnoun,“Contribution à la Modélisation et au Contrôle de trajectoire de Trackers Photovoltaïque à Haute Concentration (HCPV) ,” Thèse de doctorat, Ecole Nationale Supérieur de l'Arts et Métiers, 2015.
  • T. Esram , P. L. Chapman, “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques, ” IEEE Trans. Energy Conversion v22 , No. 2, pp439-449. 2007.
  • J G. Walker, “ Evaluating MPPT Converter Topologies Using a Matlab PV Model, ” Journal of Electrical & Electronics Engineering, v21, N°. 1, pp.49-56, Australia, 2001.
  • Erickson, R.W., D. Maksimovic “Fundamentals of power electronics, Second edition, Kluwer Academic Publishers”, New York(2001).
  • Sezen, S., E. Özdemir (2013) Modeling, simulation and control of threephase three level multilevel inverter for grid connected photovoltaic system, Journal of optoelectronics and advanced materials 15(3-4): 335-341.
  • I. Vechiu, “ Modélisation et Analyse de l'Intégration des Energies Renouvelables dans un Réseau Autonome , ” Thèse de doctorat, Université du Havre, 2005.
  • M. Camara, B. Dakyo, H. Gualous, “Polynomial Control Method of DC/DC Converters for DCBus Voltage and Currents Management-Battery and Supercapacitors,” IEEE Transactions on Power Electronics v27 , no. 3, 1455–1467, 2012.
  • Portillo, R., S. Vazquez, J.I. Leon, M.M. Prats, L.G. Franquelo (2013) Model based adaptive direct power control for three-level npc converters, IEEE Transactions on industrial informatics 9(2): 1148-1157.
  • Utkin, V., J. Gulder, J. Shi “sliding mode control in electromechanical systems”, 1999.
  • K.M. Arun Prasad, A. Unnikrishnan and N. Usha, 'Fuzzy Sliding Mode Control of a Switched Reluctance Motor', Global Colloquium in Recent Advancement and Effectual Researches in Engineering, Science and Technology, 'RAEREST', 2016.
  • J. Hu , J. Zhu , D. G. Dorrell “ Model Predictive Control of Grid Connected Inverters for PV Systems with Flexible Power Regulation and Switching Frequency Reduction”, IEEE Trans. Ind. Appl., v51, No.1, pp. 587–594, 2015
  • Villalva, M. G., J.R. Gazoli, E.R. Filho (2009) Comprehensive approach to modeling and simulation of photovoltaic arrays, IEEE Transactions on power electronics 24 (5): 1198-1208.
  • Sarpturk, S.Z., Y. Istefanopulos, O. Kaynak (1987) On the stability of discrete-time sliding mode control systems, IEEE Transaction on Automatic Control 32(10): 930-932.
  • Ramírez, J. D.B., J.R. Rivas (2012) DSP-based simplified space-vector pwm for a three-level vsi with experimental validation, Journal of power electronics 12(2): 285-293.
  • M.H. Rachid, “Power Electronics Handbook: Devices, Circuits and Applications,” Third Edition, Elsevier’s Science & Technology, ISBN: 978-0-12-382036-5, USA, 2011.

Abstract Views: 152

PDF Views: 110




  • Fuzzy-PI Based Sliding Mode Control to Management of Hybrid Energy System Grid Connected

Abstract Views: 152  |  PDF Views: 110

Authors

M. Boukhalfa
LAADI Laboratory, Faculty of Science and Technology, University of Djelfa, Algeria
A. Benaissa
LAADI Laboratory, Faculty of Science and Technology, University of Djelfa, Algeria
A. A. Bengharbi
Energy Engineering and Computer Engineering (L2GEGI) Laboratory, University of Tiaret, BP P 78 Zaâroura, 14000, Tiaret, Algeria
M. R. Bengourina
Centre de Développement des Energies Renouvelables, Algiers, Algeria
A. Khoudiri
LAADI Laboratory, Faculty of Science and Technology, University of Djelfa, Algeria

Abstract


This paper presents an optimized advanced control technique for a grid-connected hybrid energy system (HES) based on a solid oxide fuel cell (SOFC) and a photovoltaic panel (PV) in a distributed power generation system. A classical full sliding mode control and a Fuzzy-PI sliding mode are proposed for a system operation and power management mode (UPC mode). The latter technique which is based on a combination of a classical controller and fuzzy artificial intelligence system is utilized at power and current adjustment stage. The fuzzy system gave the optimal gain values to the PI controller to get a better performance. The obtained results show that the optimized sliding mode control (Fuzzy-PI) is better than the classical sliding one in terms of power, response time, and robustness against disturbances in production and consumption energy.

Keywords


Hybrid Energetic Systems, Solid Oxide Fuel Cell (SOFC), Photovoltaic Panel (PV), Sliding Mode Control, Fuzzy-PI Control, Electrical Grid.

References