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Steel has played an indispensable role in numerous industries, particularly in architecture, aerospace, and the automotive 
sector, and has been one of the most crucial components in manufacturing. The possibility of defects in the steelmaking 
process has had a substantial impact on the quality and service life of the final product. With the objective of ensuring a 
timely response in steel production, this paper has presented a model for the classification, detection of defect regions, and 
visualization of spatial defects. The model has been founded on the synthesis of convolutional neural network, snake 
algorithms, and algorithms for generating spatial defects based on images. The convolutional neural network has been 
trained using images from the NEU Surface Defect database, and model evaluation has been carried out on previously 
unseen samples that have not been included in the training data. The convolutional neural network has achieved an overall 
accuracy of 88.4% with unseen samples from the NEU Surface Defect database, with predictive abilities ranging from 
72.7% to 97.7%. Following the classification, a spatial representation of the damage has been generated, and defect 
segmentation on the material has been executed. The application of this model in modern industry has the potential to 
significantly enhance the performance and quality of high-risk manufacturing processes, mitigate unnecessary losses, and 
enable informed decision-making about future steps in a more insightful manner. 
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1 Introduction 
The fourth industrial revolution has fundamentally 

transformed global manufacturing and industrial 
processes. Its objective has been to enhance productivity 
and improve product quality. Many countries have 
adopted strategies to upgrade production technologies, 
incorporating sensors and communication devices for 
automation, improved quality, and cost reduction. This 
has encompassed the utilization of IoT and big data in 
smart factories within extensive production chains.1, 2 

The utilization of cutting-edge technologies enables 
data collection from sensors in production lines, 
processing it into valuable information, all powered by 
artificial intelligence (AI), specifically deep learning. 
This technology, though relatively new, holds immense 
potential, with performance tied to data quality and 
quantity. Deep learning addresses data processing 
challenges seen in traditional AI by identifying complex 
patterns within unstructured data.1-5 

Small and medium-sized enterprises have encountered 
obstacles while embracing these technologies, most 
often due to financial constraints and slow adoption of 

the need for digital transformation. Nonetheless, 
computer vision and deep learning have found versatile 
applications and have been constantly improving as 
productivity and product quality have enhanced. The 
industrial use of modern digital tech has expanded 
significantly, especially in high-risk manufacturing roles 
that have demanded precision and swift decision-
making.6 For instance, in steel manufacturing, timely 
defect detection has been crucial. Defects have 
significantly raised manufacturing costs and degraded 
product quality. Surface flaws on metals have 
detrimentally affected their properties, and metal has 
remained indispensable in production facilities.7,8 

Metal surface defects have arisen under various 
conditions (e.g., during production, secondary rolling, 
cooling, external forces, etc.) and have had a 
significant impact on current or future production 
equipment. Consequently, substantial research has 
been dedicated to computer vision and deep learning 
for developing effective models to diagnose these 
issues. These models have primarily focused on 
assessing the extent of defect-affected areas and 
classifying defects.6-9 Depending on the algorithmic 
nature, they have been categorized into the following 
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groups: statistical methods (e.g., thresholding, 
clustering, edge-based, etc.), spectral techniques (e.g., 
Fourier transform, multiscale geometric analysis, 
etc.), model-based approaches (e.g., Weibull model, 
AC, etc.), and machine learning methods (e.g., 
supervised, unsupervised, CNN).9-11 Given the need 
for classification model development and available 
resources, the performance of the proposed models 
has been satisfactory. 

In line with current global research trends, this 
paper presented a model for metal surface defect 
classification, combining statistical, model-based, and 
AI algorithms. 
 
2 Materials and Methods 
 

2.1 Convolutional neural network 
Traditional signal processing involved the 

application or creation of various filters. By using 
them, different types of information related to signals 
were obtained. The application of CNN in signal 
processing enabled the automatic creation of 
attributes that were relevant to a given problem.12,13 

CNN required the existence of a convolutional layer, 
but in addition to it, it could also contain aggregation 
layers and fully connected layers. Each convolution 
operation was determined by the step, filter size, and 
zero padding. In computer vision problems, a 
convolutional layer was used to extract features from 
images. This was represented through a convolutional 
operation on the l-th convolutional layer: 
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Convolutional layers and aggregation layers 
alternated with each other. Aggregation layers aimed 
to gradually reduce the dimensionality of the 
representation, which affected the number of 
parameters and the computational complexity of the 
model. One of the most popular aggregation methods 
was the rectified linear unit (ReLU), and it could be 
applied in various fields, such as image processing. A 
fully connected layer sat behind the last aggregation 
layer and learned using attributes constructed by 
previous layers. 

In the output layer, there could be a softmax 
function that represented the normalized exponent of 
the output values. It was represented by the following 
expression: 
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                                                           …(2) 

Jointly, CNN layers enabled proper signal 
processing, providing the required output, in this case, 
defect classification. 

 

2.2 Active contours using the Chan-Vese model 
Active contours were techniques that allowed the 

segmentation of the area of interest in the image based 
on a contour that evolved over time. In other words, 
an active contour was a curve defined in the image 
domain with the property of changing its shape, size, 
and topology during its evolution, as defined by the 
energy functional. At the beginning of this process, an 
initial curve was set, which could be of arbitrary 
shape and position, while at the end of the process, 
the curve assumed its final position by encompassing 
the desired object in the image. The energy functional 
depended on the image configuration and had a 
minimum value when the curve was in the target 
position. Its essential role was to control the direction 
of movement and the shape of the curve.14 

When traditional methods of active contours were 
applied, a problem could arise in detecting objects 
with smooth boundaries or in cases where there was 
no clear boundary between objects in the image. To 
overcome this problem, the Chan-Vese model was 
developed. This model divided the relevant image 
into inner and outer regions with a contour curve. The 
initial curve evolved to the desired limits based on the 
following energy functional:15 
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The minimization of the energy functional was 
performed according to the following expression: 
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Considering the homogeneity of the image, the 

differences between c1 and c2 were required to be 
large enough for the curve to follow the desired 
contours. 

 

2.3 Dataset 
The database used to train the network was the 

NEU Surface Defect Database, which consisted of six 
kinds of typical surface defects of the hot-rolled steel 
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strip, namely RS, Pa, Cr, PS, In, and Sc. Each of these 
categories contained about 300 samples. Images were 
sized at 200×200 pixels.16 

 
2.4 The architecture of the CNN 

CNNs proved to be extremely practical networks in 
the classification of various types of images. The 
proposed architecture of our model was given in Fig. 1.  

 

Our model consisted of three parts: 
a) CNN/prediction. The network trained based on a 

database of images that were divided into six 
categories. The images passed through a series of 
convolutional layers responsible for extracting 
features. The convolution and aggregation layers 
alternated. Faster training of the network was ensured 
by introducing non-linearity into the model using  
the ReLU function. The normalization of activations 
and gradients was achieved through the batch 
normalization layer. The last layer, which was fully 
connected, performed the analysis of the sampled 
characteristics and the categorization of images. The 
essence of CNN application was that the dimensions 
of the image were compressed as they passed through 
layers by discarding unnecessary information from 

the initial full-resolution image, retaining only the 
essentials. In the last layer, the number of neurons 
corresponded to the number of classes to which the 
images could belong; 

b) Generation of a spatial representation of the 
defect. Based on the 2D image and the grayscale 
image, a spatial representation of the defect was 
formed, enabling a better understanding of the nature 
of the defect; and 

c) The segmentation of defect and the calculation 
of the surface affected by the defect. The segmentation 
was performed using AC, whereby any irregular 
shape of the defect was isolated, and based on the 
separated part, it was possible to determine the 
surface affected by the defect.  
 

3 Results and Discussion 
The proposed model showed satisfactory results in 

terms of the following essential features of the 
model: convergence of the accuracy and loss curves 
during the training process of the neural network 
(Fig. 2), the confusion matrix (Table 1), the 
generated spatial surfaces of the defects in the 
images, as well as the segmentation of the damage 
(Table 2). 

Figure 2 showed the training process of the neural 
network and monitored the change in accuracy and 
loss. It could be observed that in the first 20 epochs, 
the training accuracy amounted to about 40%. This 
was accompanied by high values of the Loss (around 
12%). With an increase in the number of epochs, i.e. 
iterations, the precision reached a higher value, while 
simultaneously, the Loss decreased. In other words, 
the values of the precision curve continuously 
increased until about 120 epochs, where they assumed 
an approximately constant value. This was followed 
by a continuous decline of the Loss curve; its 
constancy occurred approximately continuously 
around the 120th epoch. 

After training the network, the performance of the 
network, as well as the classification performance by 
individual groups, were shown in the confusion 
matrix (Table 1).  

Generally, the overall accuracy was 88.4%. In 
other words, it was demonstrated that the proposed 
model performed the classification correctly in 88.4% 
of cases. The best predictive ability of the network 
was shown for the Cr category (97.7%), while the 
worst predictive ability was shown for the Sc category 
(72.7%). The percentage of prediction for other 
categories ranged from 86.7% to 93.3%. 

 
 

Fig. 1 — The architecture of the CNN 
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In 93.5% of cases, the network classified the 
sample from the Cr category correctly, while in 6.5% 
of cases, it misclassified the sample from the Cr 
category and potentially replaced it with the Pa 
category. A high correct classification of the samples 
was observed in the event of the Rs category (in 
100% of cases, samples were classified correctly) and 
in the event of the Pa category (in 97.6% of cases, 
samples were classified correctly; in 2.4% of cases, 
the sample was misclassified as Pa). A satisfactory 
level of accuracy was observed in the network in the 
event of the Sc category (in 88.9% of cases, samples 
were classified correctly; in 11.1% of cases, they 
might have been replaced with the In or Pa category). 
We obtained similar results for the Ps category, where 
in 84.8% of cases, the sample was classified correctly, 

while in 15.2% of cases, the sample in the Ps category 
was misclassified and might have been replaced  
with the In, Rs, or Sc categories. The worst-case 
performance of the network was observed during the 
classification of the In category, where in 71.4% of 
cases, the sample was classified correctly, and in 
28.6% of cases, it might have been replaced with the 
Ps, Rs, or Sc categories. 

After training the network, the verification was 
performed on the samples that were not selected for 
training the network. First, a prediction was made and 
the precision of the prediction was determined, then 
spatial surfaces were generated for the given cases 
and the defect segmentation was performed, on the 
basis of which it was possible to determine the area 
affected by the defect (Table 2).  

 
 

Fig. 2 — The training process of the CNN 
 

Table 1 — Confusion matrix 

 C I P PS RIS S Prec. 

C 93,5% 0 2.4% 0 0 0 
97.7% 
2.3% 

I 0 71.4% 0 4.4% 0 5.55% 
90.9% 
9.1% 

P 6.5% 0 97.6% 0 0 5.55% 
88.9% 
11.1% 

PS 0 10.7% 0 84.8% 0 0 
86.7% 
13.3% 

RIS 0 1.8% 0 4.4% 100% 0 
93.3% 
6.7% 

S 0 16.1% 0 6.4% 0 88.9% 
72.7% 
27.3% 

Rec. 
93.5% 
6.5% 

71.4% 
28.6% 

97.6% 
2.4% 

84.8% 
15.2% 

100% 
0% 

88.9% 
11.1% 

88.4% 
11.6% 
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Steel is an extremely important material in the metal 
industry. Having high-quality steel is essential for the 
normal operation of the production equipment. Surface 
defects can significantly affect the lifetime of production 

equipment.7,8,16,17 The aim of this paper was to 
demonstrate the application of CNN for the 
classification of defects on metals, to create a spatial 
representation of the defect, and to locate it in the image.  

Table 2 — Visualization of the original sample, defect segmentation and spatial surface for categories: Crazing, Inclusion, Patches, 
Scratches, Pitted surface and Rolled in the Scale 

 Original sample Defect segmentation Spatial surface 

Crazing 

   

Inclusion 

   

Patches 

   

Scratches 

   

Pitted 
surface 

  
 

Rolled in 
scale 
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The database used for training and testing the CNN 
was the NEU dataset, which contained six categories 
of the most common metal defects.7,8,16 In general, the 
main challenge for defect detection was to accurately 
separate the defect from the metal surface pattern. 
One complicating factor in using the aforementioned 
dataset was the lighting, which was not uniform and 
often varied.17 Samples were taken from the database 
for independent verification of the classification. 

The application of CNN for the classification of 
various metal defects could be found in many 
papers.3,8,11 That being the case, in this paper, we 
presented a model for defect detection, the main 
algorithm of which was CNN with 6 convolutional 
layers and one fully connected layer Y. He et al. 
proposed a defect detection network using DL.16  
By combining features at multiple levels, they 
enabled defect detection, obtained important quality 
parameters related to the quantity, category, 
complexity, and the area of the defect. Their system 
produced extremely high accuracy. Besides them, Lv 
X. et al. proposed a defect detection network based  
on Single Shot MultiBox Detector.17 Performance 
evaluation was carried out by analyzing the 
parameters of the confusion matrix. The results for 
recall were approximately the same, but the algorithm 
Lv X. et al. developed performed better classification 
for I, PS, and P, while the algorithm we developed 
performed better classification for RS. The accuracy 
obtained by using our algorithm was superior. In 
addition to the development of new models for defect 
detection, the existing CNN algorithms were often 
improved. For example, Wang S. et al. examined  
the performance of the existing CNN algorithms 
(ResNet50) and improved them. By improving them, 
they managed to increase the accuracy of detection.18 

The accuracy of the complete model, i.e. the 
training time, was influenced by several factors, the 
number of selected epochs is among many others. In 
our case, the training was performed in 20 epochs. At 
the beginning of the training process, we observed a 
high value of the Loss, which entailed a low value of 
accuracy. However, already in the second epoch, the 
Loss started decreasing, and after the tenth epoch, it 
assumed a value approximately equal to 0 and became 
stable. This indicated that the learning rate was 
optimally selected.18,19 

Rapid defect classification was of utmost importance, 
but it was also important to locate the defect in the 
image. For this purpose, many algorithms for image 
segmentation could be applied. As already observed in 

various research papers, AC algorithms proved to be  
one of the best performers.14,20 Therefore, after the 
classification of the images, defect segmentation was 
performed using the AC algorithm, and the area of the 
damaged area was calculated. 

Lee S.I. et al. extended their CNN algorithm with 
class activation maps,7 while we extended our CNN 
algorithm by generating a spatial surface and calculating 
the area affected by the defect. Their network showed  
a slightly better performance. However, the spatial 
representation of the defect gave a clearer picture of the 
localized regions and helped in better understanding of 
the defect's nature and decision-making. 
 
4 Conclusion 

This paper has presented a model for the detection, 
classification, and reconstruction of defects on metal 
surfaces. The model has been designed as a synthesis of 
statistical, model-based, and AI algorithms. Considering 
the constant development of the industry, the application 
of this model has significantly sped up and simplified 
the process of detecting possible defects as well as the 
decision-making process. The presented model has 
made an essential contribution, especially in high-risk 
jobs, as well as for users without the necessary 
specialized software skills. Further research will be 
aimed at improving the model for detecting 
imperfections in metal microstructures, generating 
spatial models of the microstructure, and towards the 
prediction of the possible formation of defects on the 
surface layers of the material, depending on the 
microstructure. 
 
References 
1 Wang J, Ma Y, Zhang L, Gao R X & Wu D, J Manuf Syst, 48 

(2018) 144 
2 Jung W-K, Kim D-R, Lee H, Lee T-H, Yang I, Youn B D, 

Zontar D, Brockmann M, Brecher C & Ahn S-H, Int J Precis 
Eng and Manuf, 22 (2021) 201.  

3 Essien A & Giannetti C, IEEE Trans Industr Inform, 16(9) 
(2020), 6069.  

4 Dave V, Singh S & Vakhaira V, Indian J Eng Mater Sci, 27 
(2020) 878.  

5 Kandavel T K, Kumar T A & Varamban E, Indian J Eng 
Mater Sci, 27 (2020) 503.  

6 Svinth C N, Walace S, Stephenson D B, Kim D, Shin K, Kim 
H-Y, Lee S W & Kim T-G, Int J Precis Eng and Manuf, 23 
(2022) 609.  

7 Lee S Y, Tama B A, Moon S J & Lee S, Appl Sci, 9(24) 
(2019) 5449.  

8 Hao R, Lu B, Cheng Y, Li X & Huang B, J Intell Manuf, 32 
(2021) 1833.  

9 Luo Q, Fang X, Liu L & Sun Y, IEEE Trans Instrum Meas, 
69(3) (2020), 626.  



INDIAN J ENG MATER SCI, AUGUST 2023 
 
 

652

10 Czimmerann T, Ciuti G, Milazzo M, Chiurazzi M,  
Roccella S, Oddo C M & Dario P, Sensors, 20(5) (2020) 
1459.  

11 Tao X, Zhang D, Ma W, Liu X & Xu D, Appl Sci, 8(9) 
(2018) 1575.  

12 Albawi S, Bayat O, Al-Azawi S & Ucan O N, Comput Intell 
Neurosci, 2018 (2018) 6973103.  

13 O’Shea K & Nash R, Neural and Evolutionary Computing, 
(2015) 1511.08458.  

14 Gur S, Wolf L, Golgher L & Blinder P, Unsupervised 
Microvascular Image Segmentation Using an Active 
Contours Mimicking Neural Network, in 2019 IEEE/CVF 

International Conference on Computer Vision (ICCV), 
Seoul, Korea (South), 2019, 10721.  

15 Wang L, Chang Y, Wang H, Wu Z, Pu J & Yang X, Inf Sci, 
418-419 (2017) 61.  

16 He Y, Song K, Meng Q & Yan Y, IEEE Trans Instrum Meas, 
69(4) (2020) 1493.  

17 Lv X, Duan F, Jiang J-J, Fu X & Gan L, Sensors, 20(6) 
(2020) 1562.  

18 Wang S, Xia X, Ye L & Yang B, Metals, 11(3) (2021) 388.  
19 Deshpande A M, Minai A A & Kumar M, Procedia Manuf, 

48 (2020) 1064.  
20 Bumrungkun P, J Phys Conf Ser, 1195(1) (2018) .  

 


