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A novel Optimal Robust Controller (ORC) for reducing vibration in a flexible link manipulator has been designed in this 
work. Compared to stiff link manipulators, flexible link manipulators have advantages, but they also have problems 
including link vibration, model uncertainty, and outside disruptions. The ORC aims to address these challenges and improve 
the positioning of the flexible links by reducing the link vibrations. Using the Assumed Mode Method (AMM), the dynamic 
model of a two-link flexible manipulator has been developed in order to create the ORC. With two mode shapes taken into 
consideration for each link, the deflection of the links has been modelled using mode shapes. The ORC has been designed to 
achieve robust performance in vibration reduction, even in the presence of unmatched model uncertainty. Proof of the 
matching condition of the uncertainty has been given, and the closed-loop stability of the resulting system has been 
established. The value of the uncertain parameter has been purposefully changed to illustrate the robustness of the created 
controller. For comparison purposes, a well-known reliable controller called the Sliding Mode Controller (SMC) has also 
been developed. The performance of the proposed ORC has been compared with that of the SMC in the simulation section, 
and the ORC is determined to be more effective at minimizing vibration. 
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Introduction 
The advantages of Flexible Link (FL) manipulators 

in comparison to rigid link manipulators have sparked 
a growing interest in their research. The links of the 
flexible link manipulator are light in weight. Hence 
high-rating actuators are not required. The flexible 
link manipulator's design cost and power needs are 
decreased by this capability. The light weight of the 
flexible link reduces stiffness. The prevalence of 
vibrations is a common and undesirable occurrence 
due to the low stiffness of the links. Since vibration 
degrades the system’s performance and hinders the 
proper positioning of the links. FM might involve 
model uncertainty and external disruptions in addition 
to vibrations. Two-Link Flexible Manipulator 
(TLFM) is a highly nonlinear and coupled system too. 
Under such circumstances, the Optimal control 
approach alone is not sufficient and cannot perform 
well. Therefore, along with the Optimal controller, a 
robust controller can be used. Since, robust controllers 
can perform satisfactorily in the presence of 
incomplete dynamics, external disturbances, and 
model uncertainty also solving a robust problem using 

an optimal approach is simpler. To deal with such 
difficulties in this work Lin’s approach1 has been 
adopted. Apart from Lin’s method, many control 
methods have also been developed for the control of 
FM such as robust control2–7, observer-based control8, 
sliding mode control9–15, PD control16,  resonant 
control17,18, etc. Since, Flexible manipulator is highly 
nonlinear and can have model uncertainties, external 
disturbance, vibrations, and incomplete information 
about the system dynamics. Under such conditions, 
robust controllers perform satisfactorily. Therefore, 
nowadays robust control methods are mostly adopted 
by researchers.   

Wang et al.5 introduced a robust 𝐻∞ controller and 
conducted a comparative analysis with an LQR 
controller to assess their robustness and tracking 
precision. Lee & Lee19 introduced variable structure 
control and virtual control force method to control 
joint angles and vibration of the links respectively. 
Hisseine & Lohmann2 compared the performance of 
sliding mode control and nonlinear 𝐻∞ control 
techniques for the flexible manipulator. It has been 
found that the sliding mode technique works well in 
the presence of pant uncertainties due to parameter 
variations. For joint location tracking and vibration 
reduction in the face of model uncertainty, SMC has 
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been designed by Thakur & Barai.14 Variations in the 
value of the uncertain parameter, equivalent viscous 
damping, have been made. A comparative analysis 
was conducted to evaluate the performance of the 
controller in comparison with the Proportional-
Derivative (PD) controller. Thakur et al.20 proposed a 
Lyapunov-based controller for vibration reduction. 
Model uncertainty (equivalent viscous damping 
coefficient) has been considered by the author. A 
Crow search algorithm has been developed by the 
author to control the link vibration in an optimal 
way.21 Sasaki et al.22 combined three control logics 
i.e., feed forward controller, adaptive notch filter and
strain feedback controller, to effectively mitigate
vibrations in the flexible links. To overcome the
vibration problem Abdul-Lateef et al.23 proposed a
controller that has been designed by the author by
combining the neural network with broad learning
theory. Karkoub et al.24 proposed a linearized model
with model uncertainty and a robust controller has
been designed for tip trajectory tracking. Daafouz
et al.7, varied the payload to show the performance of
the robust controller designed by solving a two-
variable Riccati equation. Along with trajectory
tracking, the collision problem has been addressed by
Morlock et al.25 Using variable structure controllers
like SMC, the chattering problem in the controller
response is normal. To overcome this problem, He
et al.26 integrated a neural network into the back-
stepping method and its effectiveness has been
compared with a PD controller. Some authors divide
the FM system into two subsystems, slow mode (rigid
components) and fast mode (flexible 
components).4,27,28 For vibration reduction, the slow
mode utilizes SMC (Sliding Mode Control), while the
fast mode employs the Linear Quadratic Regulator
(LQR) controller. 27,28 To improve control
performance, Li et al.4 created a decomposition-based
robust controller and different controllers for the slow
and fast subsystems. Mathematical model of flexible
manipulator has been obtained by different modeling
approaches such as finite element method29,30,
assumed mode method9,31−33, and lumped parameter
method.34−36 Each method has its own pros and cons.

From the above-mentioned references, it is clear 
that the robust controllers have been mostly used by 
researchers and the link vibration is the major 
obstacle that is required to overcome before 
performing any task. Most of the controllers that have 
been proposed previously contain unknown gains. For 

the proper tuning of those gains, some extra methods 
need to be incorporated with the existing controller. 
The use of extra tuning methods increases the 
computational burden on the controllers. To overcome 
such issues, in this work, an Optimal robust controller 
has been developed which does not contain any 
unknown gains, in the frame proposed by Lin1. The 
robust control problem was initially formulated using 
model uncertainty and vibration. Then that robust 
control problem has been solved in an optimal way. 
Because, the solution derived from the optimal 
control problem can also be utilized as a solution for 
the robust control problem.1 Some notable features of 
the presented work include: i) The proposed controller 
is free of unknown terms, eliminating the need for 
additional tuning methods. ii) To date, no researchers 
have utilized Lin's method for vibration reduction in a 
two-link flexible manipulator, making it a novel 
contribution. iii) Model uncertainty, specifically the 
payload, has been taken into account, and proof of the 
matching condition has been provided. 

Here, the dynamics of TLFM have been obtained 
using AMM considering two modes for each link. 
External disturbances and model uncertainty have 
been taken into account. Evidence of the matching 
condition for the model uncertainty, specifically the 
payload mass, has been provided. Since the matching 
condition plays a major role in the design of the 
controller. The mass of the payload has been seen as a 
source of uncertainty. Because any change in its value 
can have a significant impact on the system's 
performance. To show the reliability of the suggested 
Optimal Robust Controller (ORC), the value of the 
uncertain parameter has been changed in this 
problem. In the simulation section, a comparative 
evaluation has been conducted between the developed 
Optimal Robust Controller (ORC) and a Sliding Mode 
Controller (SMC), revealing superior performance of 
the ORC. 

Modeling and Problem Formulation of TLFM 
In Fig. 1, it has been shown that motor1 is 

connected at the base. 1  represent the mass of the 

second motor which connects link1 and link2 and 2
represents the mass of the payload attached at the free 
end of link2. w  and   are the deflection and angular 
position of the flexible links respectively. 11 12,   are 

the mode shapes associated with the link1 and 22 21, 
are the mode shapes associated with link2. 1  and 2



J SCI IND RES VOL 82 JULY 2023 702

are the mass of link1 and link2 respectively. In this 
work, the attachment of flexible links has been 
implemented using Revolute joints, enabling the links 
to move exclusively within the horizontal plane. The 
primary focus was to maintain a collision-free 
environment for the two-link flexible manipulator, as 
collisions could cause damage to both its physical 
structure and operational capability. Furthermore, 
altering the cross-section of the link would result in a 
significant modification of the overall dynamics. 
Additionally, the dynamic model presented in the 
paper would undergo changes if the influence of 
gravity were to be taken into consideration. Hence, 
before designing the controllers, some assumptions 
have been made: (i) The motion of the TLFM has 
been restricted in the horizontal plane, (ii) the Gravity 
effect has been ignored, (iii) There is no collision 
point in the workspace of the TLFM, (iv) Throughout 
the operation, the cross-section of the flexible links 
remains constant. With the help of these assumptions, 
the dynamics of the TLFM have been given as37 
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where, Coriolis-centrifugal forces acting on the 

system are given by the matrix  T   , 

 1 2

T
T T   is the control torque, 1T  is the torque 

of the Motor1, 2T  is the torque of the Motor2,  is 
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 is the inertia 

matrix of the entire system. Detailed expressions have 
been presented as37 
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The expressions of the inertia matrix can be given 
as 37- 
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The detailed expression for Coriolis-centrifugal 
force can be given as 37- 
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Before proving the matching condition of the 
uncertain value some assumptions are made: 
a) deflections are neglected, b) joint angles are
considered very small. Let, 2 be the uncertain value 

Fig. 1 — Planer TLFM (inspired from Yang and Zhong37) 
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a) deflections are neglected, b) joint angles are 
considered very small. Let, 2 be the uncertain value 

of the payload and 20  be the nominal value of the 
payload. The Eq. (1). can also be rewritten as 
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where, exd  is the external disturbance. Let’s calculate 
each term without considering external disturbance and 
using the assumptions made for the matching condition 
and using the parameter values given in Table 1. 
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where, is a positive integer. Combining Eqs (4 & 5) 
can be expressed as 
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Eq. (7) can also be written for 20  
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Eq. (2) can be written as 
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Therefore, it can be observed that  
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where, R̂ is a nonzero quantity. The analysis of Eq. 
(12), reveals that the uncertainty lies outside the range

B̂ . As a result, the model uncertainty, introduced into 

the system through the input matrix B̂ , fails to meet 
the matching condition. 
 
Controller Design 

In this section, first, the robust control problem has 
been discussed and formulated. Then this problem has 
been solved using the Optimal approach. The Optimal 
robust controller has been designed without 
considering external disturbance.  
 
Optimal Robust Controller (ORC) Design 

It is observed from the previous section that, the 
input matrix and system matrix both consist of an 
uncertain parameter. At first, the robust control 
problem has been constructed considering uncertainty 
then this robust control problem has been solved 
using an optimal control approach.   
 
Robust Control Problem 
Eq. (9) can be rewritten as 
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feedback control law 0  , such that the closed-
loop system Eq. (13) would be asymptotically stable. 
The uncertainty in the system matrix has been 
represented as1 

                      0 0 0†                   

  … (14) 

where,    is the pseudo inverse of    and † is 

the identity matrix. With the help of a pseudo-inverse 
matrix, the auxiliary system equation can be given as 

     0 †           … (15) 

  is the added controller which is used to deal 
with the system’s uncertainty. 
Optimal Control Problem 
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Since the solution of the optimal control problem 
serves as a solution to the robust control problem, 
hence the solution to the robust control problem will 
be represented by     0 0,   . Therefore, the goal 

of     0 0,    is to make the Eq. (15) 

asymptotically stable. 

Proof of Stability 

Proof of     0 0,   , making the auxiliary 

system asymptotically stable has been presented 
below.  

Let’s define 

    0 0
min † 


       T T TV G H vv dt

… 
 (18)

For  0V  , to be asymptotically stable, it has to 

satisfy the Hamilton – Jacobi – Bellman equation1 for 
some initial value 0 , which reduced to 

  
 

   

   

0

min † 0
†

2 0

2 † 0

 
 














  
       
     

  

    

T T T T

T

T

G H V

V

V

… (19)

where, T V
V





. To show   0V    for all 0  , a 

Lyapunov candidate function has been considered, 
mentioned bellow 

      
      
    

0†

†

  

   



 






       

          

    

 T T

T T T T

T

V V V

G H V

V

… (20)

Using Eq. (19), let’s calculate each term separately, 

Term1- 

      
         

0

0 0

2

2

  

    


       

      

TV
… (21)

Term2- 

   † 2T TV   
      … (22)

Putting Eq. (21) and Eq. (22) in Eq. (20), 

   
      

    
0

0

†

2

2 2

 

  

    



      

    

    

 T T T

T

V G H

 … (23) 

Again, some terms have been separately calculated, 

    02 2 2                 T T T TH
  
… (24) 

      02          T TG … (25)

Putting Eq. (24) and Eq. (25) in Eq. (23), 

  2T TV      … (26) 
Therefore, Eq. (26) can be written as, 

   † 2      T TV … (27) 

From Eq. (27), it is evident that if the necessary 
condition  † 2 0T    is fulfilled, then

 

 
 

0 0

0 0

V

V

   

   




 … (28)

Table 1 — TLFM parameters37 

Link1 Link2

Length of the link  1 1.0 m  2 1.0 m  

Mass of the link  1 2.0  kg   2 2.0 kg   

Motor mass and Payload mass  1 0.8  kg  2 0.5 kg   

Flexural rigidity of the links 2
1 2.0 ( . )  N m  2

2 2.0 ( . )N m   
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As a result, the system achieves stability, proving 
to be the answer to the challenge of robust control. 

Sliding Mode Controller (SMC) Design 
For comparison purposes, a popular robust 

controller i.e., sliding mode controller has been 
designed using the sliding surface, defined as 
S Q Q   .38 The sliding condition has been 

considered as 21

2

d
S S

dt
  .38 Where,  and  are 

strictly positive constant. A very simple design 
procedure has been adopted considering a traditional 
sliding surface. SMC has been designed without 
considering external disturbance. The sliding surface 
is the most important part of the SMC design. In this 
work, a very traditional sliding surface has been 
considered38, given as 

S Q Q   … (29) 

where,   is a positive quantity. Using Eq. (29), 

Eq.(2) and the signum function   sgn * , the

controller expression has been presented as 

  1
2 1 sgn  

         dH Q e S H HH S  … (30) 

where,   11H   


       , 

 1
1H Q   

    and 0  . 

Stability Proof- 
The Lyapunov function can be considered as, 

1

2
TV S S … (31) 

 

Taking the derivative of Eq. (31), 

 
 1



 

 

  



 

    



 



T

T

T T

V S S

S Q Q

S Q S HH H H

… (32) 

Using Eqs. (30 & 32), 

  2sgnT TV S S S S    … (33)

where, 2 0   and 0  . Therefore, from Eq. (33) it 

can be observed that 0V  . As a result, the Lyapunov 
stability requirement has been met. 

Simulation Results and Discussion 
The simulation results in this section were 

produced utilising newly developed controllers. The 
simulation was conducted in MATLAB, utilizing the 
RK method with a time step of 0.001 seconds. The 
simulation has been run for 100 seconds to present 
more informative results. The Two-Link Flexible 
Manipulator (TLFM) parameter values are given in 
Table 1. External disturbance exd  has been considered 

as 0.02.(37) The value of the constants   and  used 
in the Sliding Mode Controller (SMC) design are 1.5 
and 0.3 respectively.  has been considered as 10 
which indicates that the speed of the rotation of the 
flexible link has been limited by 10. The simulation 
results have been obtained by varying the uncertain 
parameter value. Let, 20 10   and the value of 2
has been varied as 3, 7, and 10. The initial value of 
the state has been considered as

   1 1 2 2, , , 0.1,0.01,0.2,0.02      . 

The conditions where the payload mass 
(uncertainty) has been taken as 3 kg are shown in Figs 
2 & 3. The amplitude of maximum deflection of the 
mode functions  11max 12max 21max 22max, , ,     is very 

less in the case of the proposed Optimal Robust 
Controller (ORC) than SMC. It can also be noticed that 
the maximum torque needed by the joint actuators 

 1maxT and  2maxT is 0.4179 .N m  and 0.1682 .N m   

Fig. 2 — Control torque response of the joint actuators for M2 = 3 kg; Results obtained using: (a) Optimal robust controller and
(b) Sliding mode controller
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Fig. 3 — Modal function response, 11 and 12 are the modal function of Link 1 whereas 21 and 22 are the modal function of Link2, when 
payload is M2 = 3 kg; Results obtained using: (a) Optimal robust controller and (b) Sliding mode controller 

Fig. 4 — Control torque response of the joint actuators for M2 = 7 kg; Results obtained using: (a) Optimal robust controller and (b) Sliding 
mode controller 

respectively in the case of the proposed optimal 
robust controller, whereas the maximum torque 
needed by the actuators is 1max 4.722 .N mT   and 

1max 4.848 .N mT   in the case of the sliding mode 

controller. The less value of the torque puts less 
burden on the controllers and very high rating 
actuators are not required, which reduces the design 
cost and power consumption. The scenario with the 
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Fig. 5 — Modal function response, 11 and  12 are the modal function of Link 1 whereas 21 and 22 are the modal function of Link 2, 
when payload is M2 = 7 kg; Results obtained using (a) Optimal robust controller and (b) Sliding mode controller 

Fig. 6 — Control torque response of the joint actuators for M2 = 10 kg; Results obtained using: (a) Optimal robust controller and 
(b) Sliding mode controller

uncertain parameter value set to 7 kg are shown in 
Figs 4 & 5, whereas that of 10 kg value are shown in 
Figs 6 & 7. It has been observed that the maximum 
amplitude of the deflection of the flexible links using 
the optimal robust controller is 10 times lesser 

compared to the link deflections obtained using the 
sliding mode controller. In the case of the sliding 
mode controller, the deflections of the links do not 
reduce but rather oscillate within a particular range, 
as shown in Figs 2–7. In the case of the optimal 
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robust controller, the link deflections are gradually 
reduced. To perform satisfactorily the maximum 
torque requirement of the designed Optimal 
Robust Controller (ORC) required very less compared 

to the Sliding Mode Controller (SMC) i.e., almost 10 
times less (see Table 2). The entire process of 
the proposed methodology has been presented in 
Fig. 8. 

Fig. 7 — Modal function response, 11 and  12 are the modal function of Link 1 whereas 21 and 22 are the modal function of Link 2, when 
payload is M2 = 10 kg; Results obtained using: (a) Optimal robust controller and (b) Sliding mode controller 

Table 2 — Observation table 

Controllers 

Payload mass (kg) Deflection (m) Torque (N. m) 

2
11max 12max 21max 22max 1maxT 2maxT

ORC 
3 (Figs 2&3) 4.947 × 10−4 3.023 × 10−5 1.203 × 10−3 2.916 × 10−5 0.4179 0.1682 
7 (Figs 4&5) 6.952 × 10−4 4.266 × 10−5 1.718 × 10−3 2.738 × 10−5 0.9535 0.3496 

10 (Figs 6&7) 7.148 × 10−4 4.466 × 10−5 2.212 × 10−3 2.751 × 10−5 1.403 0.5092 

SMC 
3 (Figs 2&3) 7.255 × 10−3 3.016 × 10−4 2.367 × 10−2 4.221 × 10−4 4.722 4.848 
7 (Figs 4&5) 9.228 × 10−3 4.623 × 10−4 3.447 × 10−2 7.571 × 10−4 14.46 19.73 

10 (Figs 6&7) 9.819 × 10−3 5.586 × 10−4 3.758 × 10−2 9.581 × 10−4 25.08 37.54 
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Conclusions 
Considering external disturbance and unmatched 

model uncertainty, a specially designed Optimal 
Robust Controller (ORC) has been developed for 
TLFM. The proposed ORC eliminates the need for 
unknown gain terms, thus eliminating the requirement 
for additional tuning techniques to determine these 
values. Although the controllers were initially 
designed without considering external disturbances, 
they have demonstrated satisfactory performance even 
in the presence of such disturbances. The designed 
controller is fully equipped to handle various 
challenges encountered in this study, including link 
vibration, model uncertainty, and external 
disturbances, without any additional controllers or 
tuning methods. A comparative analysis clearly 
indicates the significant superiority of the ORC 
approach compared to the Sliding Mode Control 
(SMC) method, as evidenced by lower torque 
requirements and reduced deflection amplitudes. 
These findings indicate that the suggested ORC 
outperforms SMC in terms of performance. 
Furthermore, the proposed ORC methodology holds 
promise for application in other complex linear or 
nonlinear systems. Real-time implementation remains 
a potential future extension of this research. 
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