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Speech Imagery (SI) corresponds to imagining speaking an intended speech or a segment of speech. Decoding the SI 
process aids in building speech-based neural prosthetic devices. Though SI-based research has been carried out to decode 
imagined speech for more than a decade, there is a lag in achieving the naturalness of the spoken language. This is because 
the words are built as the combination of phonemes in any natural language, but the research so far has been involving the 
SI of vowels only. Hence, this work focuses on identifying the vowels from EEG signals acquired while imagining the 
corresponding phonemes. The acquisition process was repeated for multiple trials. The EEG signals were decomposed into 
five sub-band frequencies to analyze the activity during SI tasks. The energy coefficients extracted from the sub-band 
frequencies were employed in training the Recurrent Neural Network to classify the English vowels. Further, to emphasize 
the importance of training the classifier with multi-trial data, the results were compared with that of the single-trial data 
acquired from the same set of participants, and an accuracy of 84.5% and 88.9% were achieved for single and multi-trial 
protocols, respectively. The analysis using multi-trial data was able to achieve 4.4% higher accuracy when compared to 
single-trial data. Higher activations in the theta band during the speech imagery tasks and higher Classification accuracy 
while applying theta band features show the capability of using the theta band features in imagined speech decoding tasks. 

Keywords: Electroencephalography, Imagined vowel identification, Phoneme, Recurrent neural network, Speech imagery 

Introduction 
Speech imagery is the act of visualizing speech 

without articulation. It is a type of mental imagery that 
uses covet speech. Electroencephalography (EEG) has 
always been effective in obtaining tangible information 
from brain activity with a potential for capturing 
neuronal activation during imagining tasks.1 By 
training the participant using mental imagery 
processes, neural pathways for speech and cognition 
can be restored.2 In speech-impaired individuals, 
identification of the intended speech is the basic 
requirement of any brain-computer interaction system.3 

Decoding imagined speech with neural decoders 
using embedded electrodes on the cerebral cortex was 
reported by Guenther et al.4 Later, the need for using 
the non-invasive technique to decode imagined speech 
arouse and the binary classification of the imagined 
vowels and phonemes was addressed.5 As speech is a 
higher cognitive behavior of the brain, it generally 
involves the functioning of a wide range of cortical 
areas. Speech is mainly produced, processed, and 

comprehended in the left hemispheric brain regions 
namely the Broca’s area (posterior-inferior frontal 
gyrus), Wernicke’s area (posterior-superior temporal 
lobe), and the laSTG (left anterior superior temporal 
gyrus).6 Hence, analysis of the brain activity in the 
above-mentioned brain regions during SI tasks will 
likely reveal the neural signatures related to the 
intended speech. This can provide a basis for building 
BCI systems to support people with neuronal speech 
disorders, with people who can process and 
comprehend speech but cannot produce proper or 
continuous speech. Most of the existing neural 
prosthesis systems are the “P300-speller” type.7 More 
robust systems to detect the user thoughts can be 
developed by including the brain responses associated 
with SI.8  

Imagined vowel decoding has been implemented 
by Min et al.9 in 2016, using Ensemble Learning 
Machine-based binary classification, and overall 
classification accuracy of 70% was reported. 
Classification of the phonemes into five groups based 
on their phonological categories has also been 
reported by Zao et al. in 2015.(10) The same dataset 
was further explored and a slightly higher 

—————— 
*Author for Correspondence
E-mail: anandha.sree@gmail.com



RETNAPANDIAN & ANANDAN: IMAGINED VOWEL IDENTIFICATION USING EEG 757

classification accuracy of 74% was reported by 
employing Deep Belief Network.11 A maximum 
accuracy of 87% was reported for all the phonemes in 
the dataset while using Convolutional Neural 
Network and Denoising Auto-Encoder12 and a higher 
classification accuracy of 90% was reported while 
using DenseNet.13 Three imagined action words were 
classified using Relevance Vector Machine and a 
classification accuracy of 70% and 95% was 
reported for multi-class and binary classifications, 
respectively.14 A multi-class classification of five 
action words in the Spanish language was performed 
using Random Forest and wand the results showed an 
average classification accuracy of 58%.15 Imagined 
/a/, /u/, and /rest/ classes were classified using Deep 
Capsule Neural Network, and an average accuracy of 
93.32% was reported.16 A Capsule Neural Network to 
categorize SI patterns /iy/ and /uw/ on the Karaone 
dataset was reported.17 An improved classification 
accuracy on the classification of Chinese characters 
‘left’ and ‘one’ using a Light GBM-based 
classification algorithm was reported.18 

In our earlier studies, brain connectivity parameters 
have been estimated from the imagined (without 
articulation), spoken and unspoken (with articulation) 
Consonant-Vowel (CV) pairs, and a detailed region-
specific analysis has been performed. Predominant 
activation of left frontal and temporal regions during 
speech imagery-related tasks was observed.19 
Statistical features were derived from the brain signals 
of left frontal and temporal regions acquired during 
speech imagery of vowels and the vowels were 
classified using multi-class Deep Belief Networks 
(DBN).20 Inter-hemispheric, as well as intra-
hemispheric analyses, were performed for protocols 
involving speaking and imagining speaking of 
Consonant-Vowel-Consonant (CVC) words. In this 
process, the brain connectivity parameters were 
extracted from the sub-band frequencies of the EEG 
signals.21 The vowels were classified from the 
imagined CVC words using DBN and Recurrent 
Neural Networks (RNN).22 RNN is a deep learning 
technique that is more adaptive for the classification 
of time-series data.23,24 The imagined Vowels were 
identified from single-trial SI-based tasks involving 
imagining of vowels, consonant-vowel syllables, and 
consonant-vowel-consonant words. Even though these 
approaches were able to take the process close to the 
identification of words from imagined speech, they 
lag in naturalness since words are not just 

combinations of vowels and consonants but instead 
the combination of their corresponding phonemes.  

Therefore, in this work, imagined vowels using the 
EEG sub-band energy coefficients and recurrent 
neural networks have been identified. English vowels 
have been classified from the EEG signals acquired 
during multi-trial SI tasks involving imagining 
speaking the phonemes of vowels. Reliability analysis 
was carried out and furthermore, energy coefficients 
and relative power of each sub-band were used to 
train the RNN for retrieving the imagined vowels. 
Since words are built as a combination of phonemes 
and are the building blocks of sentences in natural 
speech, the process of decoding imagined speech 
through their phonemes seems meaningful in the 
Brain-computer interaction platforms. This can be 
implemented in building prosthetic devices for people 
with speech production disorders. 

Materials and Methods 
A 14-channel EEG signal acquisition system was 

used to acquire the data during Speech Imagery (SI) 
task. The raw EEG signals acquired while performing 
the task were pre-processed using conventional pre-
processing routines to remove the noise. The 
activations irrelevant to the task were removed using 
Independent Component Analysis (ICA). The noise 
and artifact-free signals were decomposed into sub-
band frequencies using Discrete Wavelet Transform 
(DWT). Features from each sub-band frequency were 
estimated to identify the imagined vowel using 
Machine Learning Technique. The pipeline of the 
techniques employed in this study is shown in Fig. 1. 
The aim of BCI applications along with higher 
classification accuracy is to minimize the complexity 
of holding the signal acquisition device during the 
daily usage of the BCIs. Hence, this work aimed at 

 

Fig. 1 — Pipeline of the methodology (an overview) 
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identifying the imagined vowels with a minimal set of 
electrodes, instead of using a high-density electrode 
system for EEG acquisition.  

Data Acquisition and Pre-processing  
Five male volunteers participated in the process of 

data collection. Only native right-handed Tamil (a 
south Indian language) speakers who had no prior 
history of neurological disorders took part in the 
study. The experiment was carried out in a 
soundproof room at the institution. The experimental 
protocol and the difference between speech and 
speech imagery-based tasks were explained clearly to 
all the participants ahead of the signal acquisition. 

Wireless Emotiv EPOC+ Neuro-technology EEG 
acquisition system was used for recording the EEG 
signals. The EMOTIV EPOC+ is a portable 14-channel 
EEG system with two reference electrodes placed at 
the left and right mastoid labeled as CMS and DRL, 
respectively. Emotiv EPOC+ has been used as an EEG 
acquisition system in various human-computer 
interactive applications.22 In Emotiv, built-in digital 
filters facilitate filtering during data acquisition with a 
resolution of 0.51μV. The signals are sampled at the 
rate of 128 samples per second and the impedance is 
maintained below 10kΩ using real-time contact quality 
measures supported by the Emotiv software. As 
Emotiv is an easy-to-use device and comes with user-
friendly software support, initial assistance alone was 
obtained from a technician specialized in EEG device 
electrode positioning and data acquisition.  

The experimental protocol involves a visual 
stimulus of phonemes of vowels shown to the 
participants using a display placed at a 1-meter 
distance. Though native Tamil speakers will have a 
different dialect and accent in speaking English, the 
commonly used sound forms which are more common 
for the accent of native Tamil speakers, as well as 
English speakers, have been chosen for the procedure. 
For instance '/a/' as in apple, '/e/' as in egg, '/i/' as in 
ink, '/o/' as in ostrich, and '/u/' as in umbrella have 
been chosen for data acquisition. The experimental 
protocol for data acquisition of the phoneme of vowel 
/i/ for subject #3 is shown in Fig. 2 and the same 
protocol was repeated for all the subjects for all the 
vowels. The experimental protocol used for this study 
has been verified and approved by the Institutional 
Human Ethical Committee (Ref. No.: IHEC/SSN 
CE/Pr. No. 02/26.10.2018). 

The acquired signals were segregated into the rest, 
visual stimulus, and SI task states based on the 

occurrence of the events of the protocol. 
The phoneme-based vowel SI protocol consists of 
the following states:  
 Rest: a mentally and physically inactive state to

get prepared for the following SI stage.
 Visual Stimulus (VS): a visual representation of

the phoneme of one vowel at a time for 10
seconds.

 Speech Imagery (Tr #1-5): imagined saying the
phoneme of the vowel shown in the visual
stimulus without actual articulation.

The process was repeated five times with 
intermittent session breaks and the corresponding 
signals were acquired. The channels corresponding to 
the Frontal, Temporal, and Parietal regions were 
chosen for the analysis. This is mainly because the 
frontal and temporal regions are highly activated 
during the SI process. The frontal and temporal regions 
of the left and right hemispheric brain are active 
during speech production and comprehension tasks.25  
The brain wave rhythms are categorized into bands 
of different frequency ranges. Since the valuable 
information in the EEG signals is packed within the 0 
to 40 Hz frequency range, the higher frequencies were 
considered noise. The acquired signals were band-
passed between 0.1 Hz and 40 Hz using a Butterworth 
band-pass filter of order 8.(26) Filtered signals were 
baseline shifted by subtracting the mean of each signal 
and the mean-shifted signals were normalized using the 
min-max normalization technique. The normalized 
EEG signals were smoothened by dividing them into 
epochs using Hamming window.27 After filtering and 
normalizing, the signals were free from sensor noise 
and line interference that commonly contaminate the 
EEG recordings.28 ICA was implemented to extract 
multiple functionally independent sources of activation 
generated by specific cortical regions of the brain using 
EEGLAB as mentioned by Sandhya et al.29 The 
MATLAB R2019b was used for signal processing and 
classification. 

Fig. 2 — Experimental protocol for multi-trial phoneme-based 
vowel speech imagery; IR: Initial Rest, FR: Final Rest, R1-R5: 
Inter task Rests, TR #1-5: Trials 1-5; VS: Visual Stimuli 
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Reliability Analysis 
Reliability analysis was carried out to confirm that 

the acquired signals are purely confined to the Speech 
Imagery based tasks as well as rest. It has been 
reported in the literature that the alpha band relates to 
rest30 and the theta band relates to mental activities.31 
Hence, the information from the alpha and theta bands 
was segregated by applying Empirical Mode 
Decomposition (EMD). EMD is a self-adaptive  
data-driven method is used as a time-space filter that 
generates localized time-frequency components by 
decomposing the signal into a number of smaller 
oscillating components called IMFs and residues. 
After decomposition, the IMFs were arranged in 
decreasing order of the frequency components.  
The segmented signals were then subjected to  
Hilbert-Huang Transform (HHT) from which the 
Phase Locking Value (PLV) was estimated for the 
corresponding Intrinsic Mode Functions (IMFs).32 To 
quantify the zero crossings of the decomposed signal, 
the Hilbert-Huang transform was applied. HHT 
computes the instantaneous amplitude as well as the 
instantaneous phase of a signal.33 Instantaneous phase 
(φ) of the signal was used for computing the Phase 
Locking Value (PLV). PLV is a synchronization 
measure that is used to analyze the phase difference 
between two brain signals. Here, the PLV has been 
calculated as given in Eq. (1).  
 

𝑃𝐿𝑉ሺ𝑡ሻ ൌ ห𝐸ሾ𝑒∆ఝೣሺ௧ሻሿห  …(1) 
 

where, ∆𝜑௫௬ሺ𝑡ሻ ൌ  𝜑௫ሺ𝑡ሻ~𝜑௬ሺ𝑡ሻ, E[] is the statistical 
Expectation, and 𝜑௫ሺ𝑡ሻ, 𝜑௬ሺ𝑡ሻ are the instantaneous 
phases of two time-varying signals.  
 
Sub-band Energy Coefficients Extraction 

For non-stationary signals such as EEG, a time- 
frequency method like Discrete Wavelet Transform 
(DWT) is the most appropriate method for feature 
extraction.34 It has been proven that, amongst the 
various DWT techniques, Daubechies (Db) wavelet is 
more suitable for EEG-based imagery applications. 
Therefore, Daubechies (Db) wavelet has been applied 
for extracting the time domain features. A series of 
low-pass and high-pass filters were applied to the 
EEG signal to obtain the approximation coefficients 
and detail coefficients respectively.35 For a sampling 
frequency of 128 Hz, EEG sub-bands frequencies 
were obtained at the fifth level decomposition. The 
Daubechies wavelet was used to decompose the 
signals acquired from the chosen Frontal, Temporal 
and Parietal electrodes ('F7', 'F3', 'T7', 'P7', 'P8', 'T8', 

'F4' and 'F8') and extract the required features.  
The energy coefficients Root Mean Square (RMS), 
Mean Absolute Value (MAV), Integrated EEG 
(IEEG), Simple Square Integral (SSI), Variance of 
EEG (VAR), Average Amplitude Change (AAC) and 
the Relative Power (RP) are estimated as given in Eqs 
(2– 8). 
 

𝑅𝑀𝑆 ൌ  ට
ଵ

ே
∑ 𝐷

ଶሺ𝑛ሻே
ୀଵ   …(2) 

 

𝑀𝐴𝑉 ൌ  
ଵ

ே
∑ |𝐷ሺ𝑛ሻ|
ே
ୀଵ   …(3) 

 

𝐼𝐸𝐸𝐺 ൌ  ∑ |𝐷ሺ𝑛ሻ|
ே
ୀଵ    …(4) 

 

𝑆𝑆𝐼 ൌ  ∑ |𝐷ሺ𝑛ሻଶ
ே
ୀଵ |  …(5) 

 

𝑉𝐴𝑅 ൌ  
ଵ

ேିଵ
∑ 𝐷

ଶሺ𝑛ሻே
ୀଵ   …(6) 

 

𝐴𝐴𝐶 ൌ  
ଵ

ே
∑ |𝐷ሺ𝑛  1ሻ െ 𝐷ሺ𝑛ሻ|
ே
ୀଵ   …(7) 

 

𝑅𝑃 ൌ  
ூௗ௩ௗ௨ ௗ ௪

்௧ ௪  ாாீ
  …(8) 

 

where, Di(n) is the nth sample of a wavelet 
decomposed detail coefficient at level varying from 
i=1,2,3,4,5 and N is the length of the signal. The 
Energy coefficients such as RMS, MAV, IEEG, SSI, 
VAR, AAC and Relative power of each EEG  
sub-band were calculated from the detailed 
coefficients.36 Fv*t*c*b number of input vectors were 
generated, where v is the number of phonemes, t is the 
number of trials, c is the number of channels and b is 
the number of sub-band frequencies.  
 

Vowel Classification using RNN 
A multi-class Recurrent Neural Network (RNN) 

was built to classify the imagined vowels into five 
different classes. The network hierarchically learns 
categories through its hidden layer architecture. RNN 
is chosen as it works more effectively for the 
classification of time-series data. Each node within 
each network layer represents characteristics of the 
feature set and together they supply a complete 
representation of the corresponding feature vector. 
Each layer was allocated with a weight directly 
proportional to the previous output.37  

In the RNN, a single-time step of the input xt is 
supplied to the network. The vector xt is created by 
concatenating the vector wt that represents the 
extracted features of the current time step, and vector 
ht-1 represents output values of the hidden layer from 
the previous time step as given in Eq. (9). The steps 
are repeated as many times as the problem demands 
and the output yt is calculated from the final current 



J SCI IND RES VOL 82 JULY 2023 
 
 

760 

state. The estimated output is then compared to the 
actual output and the error is calculated. The 
mathematical representation of the current state is 
given as 

 

ℎ௧ ൌ 𝑓൫ℎሺ௧ିଵሻ, 𝑥௧ ,𝑤௧൯  …(9) 
 

where, ht is the current state vector (at time t) and ht-1 is 
the previous state vector (at time t-1). The current state 
vector can be rewritten as,  
 

ℎ௧ ൌ  𝜑ሺ𝑊 ∙ ℎ௧ିଵ 𝑊௫ ∙ 𝑥௧ሻ   …(10) 
 

where, φ is the sigmoid activation function, given as 
 

𝜑ሺ𝑝ሻ ൌ  
ଵ

ଵାష
  …(11) 

 

where, pi is the sigmoid probability for the ith class. 
The output vector yt is obtained as 
 

𝑦௧ ൌ  𝑊 ∙ ℎ௧  …(12) 
 

Here, Wx, Wh and Wy represent the weight matrices 
corresponding to the edges connecting input to current 
state, previous state to current state and current state to 
output state, respectively. Relu based random weight 
initialization heuristics was used to initialize the 
weights. The initial weights at the input layer were 
calculated as given in Eq. (13). The weights are equal 
at each layer. The weights are updated using the 
gradients calculated by applying the chain rule. 
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ଶ
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The gradient for updating Wx is calculated as, 
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The gradient for updating Wh is calculated as, 
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Similarly, the gradient for updating Wy is calculated as, 
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In general, the gradient for updating weights is 
given as, 
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The logistic sigmoid activation function of the 
RNNs hidden layer units is given in Eq. (11). The 
weights are adjusted as given in Eqs. (14) – (17). The 
truncated back propagation through time (t-BPTT) was 
applied to propagate error and update weights as 
explained in Algorithm 1.(38) The network was 

optimized using categorical cross entropy loss function 
as given in Eq. (19). The objective is to minimize the 
loss since, lower the loss the better the performance. 
The output error at time t is the difference between the 
actual output and the predicted output. 
 

𝐿ሺ𝐸௧ሻ ൌ ሺ𝑜௧ െ 𝑦௧ሻଶ  …(18) 
 

where, ot is the actual output, yt is the predicted 
output and L() is the loss function. Here, the loss 
function used is the categorical loss entropy, which is 
given as, 
 

𝐿ா ൌ  െ∑ 𝑡log ሺ𝑝ሻ

ୀଵ   …(19) 

 

where, n is the number of classes, ti is the truth label  
and pi is the sigmoid probability for the ith class. pi is 
estimated as given in Eq. (11). 

The RNN built for this work consisted of 11 input 
units and 5 output units. The network learns the 
features from every 2 second data, windowed with 
50% overlap, resulting in 9 timesteps from each signal. 
The RNN classifier output performance was measured 
in terms of following parameters: Classification 
Accuracy, Sensitivity, Specificity and F-score as given 
in Eqs. (20) – (23). 
 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ  
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்
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 ൌ  
்ே

்ேାி
  …(22) 

 

𝑓 െ 𝑠𝑐𝑜𝑟𝑒 ൌ  
ଶ்

ଶ்ାிାிே
  …(23) 

 

where, TP is true positive, TN is true negative, FP is 
false positive, and FN is false negative. 
 

Algorithm : t-BPTT (t1, t2) [where t1<t2<t] 
for 1 : timestep t : T do 
run the RNN for one step, computing ht (equation (9)) 
if t divides t1 then 
unroll the network 
calculate and accumulate errors across each timestep 
(equation (18)) 
roll up the network and update weights  
update t to t − t2 
end if 
end for 
t1: number of forward-pass timesteps between updates 
t2: number of timesteps to which to apply BPTT 

 

Results and Discussion 
The acquired EEG signals were band passed 

between 0.1 to 40 Hz, normalized using min-max 
normalization technique, smoothened, and subjected 
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to ICA to identify the task relevant components using 
source localization principles. Preprocessed signals 
were segmented in to five sub-band frequencies using 
EMD and the PLV was estimated from the alpha and 
theta bands.  

The averaged alpha and theta band activities during 
the SI task and rest of a representative subject are 
shown in Fig. 3. The representative topographic maps 
shown in Fig. 3 correspond to the eighth component 
of the averaged alpha and theta band frequencies. Red 
color represents higher activity and dark blue color 
represents lower activity in brain. It can be observed 
from the figure that, Alpha band showed a higher 

activity during rest and lower activity during speech 
imagery task. Contrarily, a higher activity was 
observed in the theta band during SI task with rest 
reporting a lesser activity. It was also observed that 
the theta band activity during the SI task is more in 
the left frontal regions. All the participants exhibited 
similar activations during the SI and rest tasks. 

Single subject’s PLV strengths estimated during 
the speech imagery task from the alpha and theta 
bands are represented in Fig. 4(a) and 4(b), 
respectively. The PLV is a measure that estimates the 
level of co-ordination between the signals of each 
electrode. This PLV analysis revealed that, electrodes 
of the left hemisphere (F3, F7, T7 and P7) 
coordinated well with each other in theta band when 
compared with the right hemispheric electrodes. To 
expand the understanding, the band power of the two 
sub-band frequencies were estimated and analyzed 
individually. Similar PLV strength variations were 
observed from all the participants. 

The theta band power of the electrodes considered 
for analysis is shown in Fig. 5. It was observed that, 
electrodes F3 and P7, which are nearer to the motor 
cortex, showed lesser theta band power during the 
imagery task due to lack of motor activity. Whereas 
the electrodes located nearer to the Wernicke's 
(posterior - superior temporal lobe) and Broca's 
(posterior - inferior frontal lobe) areas showed very 

 
 

Fig. 3 — Averaged alpha and theta band activity during Task
(Speech imagery of vowel 'a') and rest 

 
 

Fig. 4 — (a) PLV of Alpha band during speech imagery task of vowel ‘a’; (b) PLV of Theta band during speech imagery task of vowel ‘a’ 
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high theta band power during SI task when compared 
with rest.  

Other electrode regions showed an increased theta 
power with smaller differences during task and rest. 
Results also showed that all the participants exhibited 
similar activations in both alpha and theta bands 
during both the rest and SI tasks. The features 
extracted from the energy coefficients were 
normalized before fed to the network. The normalized 
features extracted from a single EEG signal are 
represented in Fig. 6. 

The variations in Classification Accuracy of 
different vowels using the multi-trial features 
extracted from each sub-bands are shown in Fig. 7(a). 
The average accuracy and the standard deviation 
corresponding to each band have also been 
represented. The confusion matrices obtained for the 
EEG sub-bands is shown in Fig. 7(b). The higher true 
positive and true negative to false positive and false 
negative ratios of the theta and beta band proves the 
individual better performance of the respective bands. 
Even though other sub-band frequencies like beta 

band showed slightly higher performance measures 
than the theta band, the reliability analysis reveals 
higher activations in the theta band activations during 
speech imagery tasks. Hence, theta band oscillations 
alone can be considered for the imagined speech 
decoding.  

The comparison of the Classification Accuracies of 
vowels identified from the features extracted from 
theta and beta bands using single trial and multiple 
trial protocols are shown in Fig. 8(a). Overall 
Classification Accuracy of 84.48% and 88.89% were 
observed for single-trial and multi-trial protocols, 
respectively. The averaged performance measures 
mapping (Sensitivity and Specificity) of RNN for 
identifying phoneme of vowels with the features 
extracted from the different sub-bands’ for the single 
and multi-trial protocols are shown in Fig. 8(b). 
Observations showed that the Classification Accuracy 
(Table 1) in identifying the imagined vowels using 
multi-trial protocol was improved by 4.41%. A 
comparison with state-of-the-art works is tabulated in 
Table 2 to denote the superiority of the protocol 
implemented in this work. 

 
 

Fig. 5 — Theta band power obtained during task – blue
(speech imagery of vowel 'a') and rest – red  
 

 
Fig. 6 — Features extracted from a single EEG Signal and
normalized. Root Mean Square (RMS), Mean Absolute Value
(MAV), Integrated EEG (IEEG), Simple Square Integral (SSI),
Variance of EEG (VAR), Average Amplitude Change (AAC)
Relative Delta Power (RDP), Relative Theta Power (RTP),
Relative Alpha Power (RAP), Relative Beta Power (RBP) and
Relative Gamma Power (RGP) 

 
 

Fig. 7 — (a) Variations in classification accuracy of different
vowels from sub-band frequency (x-axis) with average accuracy 
and standard deviation; (b) Confusion Matrices for each
sub-bands 
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Summarizing the observations made so far, a 
higher theta band activity during speech imagery tasks 
is clearly evident. The Phase Locking Value analysis 
revealed higher activations in theta band during the 
speech imagery tasks. The band power analysis 
confirmed the same. Finally, the performance 

measures prove that the features extracted from the 
theta band were capable of classifying the imagined 
phonemes of vowels more accurately. Hence, the 
theta band segmented from the complete signal can be 
used to speech decoding processes to minimize the 
computational complexity.  

Speech Imagery is a typical process involving 
hearing and articulation imagery tasks. Assessment of 
network functional connectivity by EEG signals 
proves to enhance the training in such cases. In  
most neuro-developmental disorders like autism, most  
children have the understanding about what they are 
taught, see, and hear. The information about those 
understandings is processed accurately, but the lack of 

 
 

Fig. 8 — (a) Comparison of the classification accuracies between
single trial and multiple trials for each vowel identified using the
features extracted from the theta and beta bands; (b) Sensitivity
and specificity mapping for the Multi-Trial Protocol Single-Trial
Protocol 

Table 2 — Comparison between the current method and Other state-of-the-art works 

Dataset Classifier Classification type Max. % 

/n/, /tiy/, /piy/, /m/, /diy/, /uw/, /iy/, gnaw, pot, and pat DBN10 Binary Classification 90% 
DBN11 Binary Classification 74% 

Multi-class classification 41.5% 
CNN, TCNN, DAE12 Binary Classification 87% 

DenseNet13 Binary Classification 90.68% 
in, out, up Relevance Vector Machines14 Binary Classification 95% 

Multi-class classification 70% 
up, down, left, right, and select (in spainsh) Random Forest15 Multi-class classification 58.41% 

/a/, /e/, /i/, /o/, and /u/ ELM, ELM-L, ELM-R, SVM-R, and LDA9 Binary Classification 73% 

/a/, /e/, /i/, /o/, /u/ RNN Multi-class classification 88.9% 

Table 1 — Performance measures, CA: Classification Accuracy, 
Sensitivity, Specificity and F - score, for classification of 

phoneme of vowels identified by Recurrent Neural Network  
for different sub-bands  

Performance Measures a e i o u 

Delta CA 83.6 83.2 82.4 86.8 84.8 
Sensitivity 60 57.1 56 68.8 61.1 
Specificity 88.7 90.7 89 90.73 91.3 

F-score 7.4 6.6 7.1 6.1 6.3 
Theta CA 92.8 92 96.8 92.8 93.2 

Sensitivity 79.3 81.2 92 82 85.1 
Specificity 96.3 94.5 98 95.5 95.7 

F-score 4.8 5.3 4.3 4.8 4.8 
Alpha CA 86.8 89.2 88.4 88.8 90 

Sensitivity 66.4 72.5 74.4 71.1 74.5 
Specificity 92.9 93.4 91.3 93.4 93.7 

F-score 5.8 5.4 5.8 5.5 5.6 
Beta CA 93.6 94.8 95.2 94.4 95.6 

Sensitivity 85.2 93.0 88 81.3 88.4 
Specificity 95.4 95.7 97 98.4 97.9 

F-score 4.7 4.5 4.5 4.6 4.5 
Gamma CA 81.6 82.8 84 88.8 82 

Sensitivity 53.7 56.1 60.2 76.9 55.2 

Specificity 89.9 90.6 89.6 91.5 88.8 
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information being transferred between the cortical 
regions may vary depending upon the level of 
disorder. Several connectivity parameters are 
available for studying the details like what and how 
much information is being transferred during a task. 
Whereas analysing the statistical changes occurring at 
the individual brain locations can clarify the degree of 
impact generated during any task.  

Since speech is a highly complex physiological 
signal, retrieval from unspoken, imagined speech is a 
major goal and needs to be progressed gradually. In 
the various attempts to retrieve imagined speech, 
vowels have been identified from EEG signals 
acquired from various forms of speech such as silent, 
imagined, and loud. Vowels have also been identified 
from single-trial SI-based tasks involving imagining 
vowels, consonant-vowel syllables, and consonant-
vowel-consonant words. Though these approaches 
tend to take the process close to speech retrieval from 
imagined speech, they lag in naturalness since words 
are combinations of phonemes of vowels. Thus, this 
work leading to the retrieval of vowels from the 
phonemes of imagined vowels is a step closer to 
verbal information retrieval with better naturalness.  
It can be noted that the protocol was designed to 
acquire multi-trial EEG signals for phonemes of each 
vowel. Speech is the higher cognitive behavior of the 
brain, involving a wide range of distributed network 
of cortical areas. Therefore, the complexity of 
extracting information from EEG signals while 
imagining speaking is higher. This includes different 
brain areas reacting in a different manner when 
compared to speaking. Thus, assimilating the brain 
activity during different trials seemed to be more 
imperative than working with a single trial data. 

Speech is produced, processed, and comprehended 
by Wernicke’s and Broca’s areas located in the left 
hemispheric brain region. And the right hemisphere of 
the brain oversees imagination tasks. The EEG signals 
acquired in and around the left and right, Frontal, 
Parietal and Temporal regions have been processed to 
estimate features for vowel identification. The 
acquired signals subjected to various signal 
processing routines were band separated and band-
wise reliability analysis was carried out to make sure 
the subject's brain activations were in sync with the 
protocol. The reliability analysis performed by the 
extracted PLV measures showed less activity in alpha 
band and more activity in theta band during SI task. 
Energy based statistical features were extracted using 
level Db5 Wavelet transform. It was observed that the 

electrodes nearer to the motor cortex, F3 and P7, 
showed lesser band power during the imagery task 
due to lack of motor activity during the imagery task. 
Whereas the electrodes located nearer to the 
Wernicke's (posterior - superior temporal lobe) and 
Broca's (posterior - inferior frontal lobe) showed very 
high band power during SI task when compared with 
rest. Higher activations in theta band during the 
speech imagery tasks and higher Classification 
accuracy while applying theta band features show the 
capability of using the theta band features alone in 
imagined speech decoding tasks. 

 The extracted features were employed in training 
and testing the multi-trial RNN for identification of 
vowels and the RNN‘s performance was evaluated. 
The classification accuracy for the vowels classified 
with the features extracted from theta and beta band 
were found to be higher with average classification 
accuracy greater than 93%. The classification 
accuracy of the multi-trial RNN was found to be 
improved by 4.41% compared to the single trial RNN. 
This is because of the more number of training 
instances that improve the classifier’s performance 
and the classifier’s ability in picking up the significant 
signatures of each class with the repeated trials. 
Though higher classification accuracy was observed 
while classification using the features from the theta 
and beta sub-bands, since theta band activity is 
coherent to the speech imagery tasks, the theta band 
features alone can be used to classify the imagined 
vowels. Extension of the work in identifying 
imagined words seemed to be a tough process due to 
the variations in phonetic representations and the 
complexity of the signals being handled. The 
substantial outcome of this process is vowel 
identification from EEG signals obtained during 
speech imagery. Though there are similar works 
available in the literature, this work has a significant 
outcome as it identifies vowels not from EEG signals 
of imagined vowels, but imagined phonemes of 
vowels. This takes the work closer to the 
identification of imagined words, as words are 
combinations of phonemes. The possibility of 
identifying the vowels from imagined phonemes with 
lesser computational complexity and better 
performance measures was also achieved. 
 

Conclusions  
This work can be further extended for 

reconstructing the interrupted or broken speech with 
the EEG of imagined speech, which can be a major 
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finding in Speech retrieval processes. The work 
progresses by identifying the imagined CV and CVC 
words from the imagined phonemes of the 
Corresponding Consonants and Vowels. Speech is a 
higher cognitive behavior of the brain. It is a complex 
task that induces continuous activations in the cortical 
regions involved in the particular task. A similar type 
of speech imagery signals was acquired from a 
subject from different geographical regions whose 
mother tongue is different but can speak English, in 
which similar types of brain activations in the speech-
related regions were observed. Though literature 
support for such acquaintances is limited, practical 
implementation proves the case. Since this paper 
limits to the identification of imagined phonemes 
alone, the inclusion of other phonemes and addressing 
the co-articulation problems are considered for  
future work. 
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