





Some Fixed Point Theorems for Single Valued and Set Valued Maps
Subscribe/Renew Journal
In this paper we introduce the concept of single valued map and set valued map and set valued map and obtain new types of contraction mappings both for single valued map and set valued maps and establish new fixed point theorems in this direction.
User
Subscription
Login to verify subscription
Font Size
Information
- Amine A. Harandi and D. Oregan, Fixed point theorem for set valued contraction type maps in metric space: Fixed point theory and Application, Vol. 662010, 7 (2010), Article ID 390183.
- S. Banach, Surles operation dansles essembles abstraits et leur applications aux equations.
- D. W. Boyd and J. S. W. Wang, On non-linear contractions, Proc. Am. Math Soc., 20 (1969) 458–464.
- S. K. Chatterjea, Fixed point theorems, CR Acad. Bulgare Sci., 25 (1972) 727–730.
- L. Ciric, Generalized contractions and fixed point theorems, Pub. Inst. Math. (Belgr), 12(26) (1971) 14–26.
- L. Ciric, A generalization of Banach contraction principle, Proc. and Math. Soc., 48(12) (1974) 267–273.
- L. Ciric, Multivalued non-linear contraction mappings, Non-linear Analysis, 71 (1974) 2716–2723.
- P. Z. Daffer and H. Kaneko, Fixed points of generalized contractive multivalued mappings, J. Math. Anals. Appl., 192 (1995) 655–666.
- N. Hassain, V. Parvanveh, Bessem Samet and C. Vetro, Some fixed point theorems for generalized contractive mappings in complete metric spaces.
- D. S. Jaggi, Some ubique fixed point theorems, Indian J. Pure Appl. Math., 8(Z) (1977) 223–230.
- M. Jleli and B. Samet, A new generalization of Banach contraction principle, J. Inequality Appl., 138 (2014).
- R. Kannan, Some results on fixed points, Bult. Math. Soc., 60 (1968) 71–76.
- D. Klim and Wardowske, Fixed point theorem for set valued contraction in a complete metric space, J. Math, Anal-Appl., 334(1) (2007).
- E. Karapinar, P. Kuman and P. Salimi, On α − ψ Meir-keeler contraction mappings, Fixed Point Theory Appl., 194 (2013)
- A. Meir and E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl., 28 (1969) 326–329.
- N. Mizoguchi and W. Takahashi, Fixed point theorems for multi-valued mappings on complete metric space, J. Math. Anal. and Appl., 141(1) (1989).
- S. B. Nadler, Multivalued contraction mappings, Pac. J. Math., 30 (1969) 475–488.
- H. K. Nashine, M. Imadad and M. Hassan, Common fixed point theorems under rational contraction in complete valued metric space, J. Non-linear Sci. Appl., 7 (2014) 42–50.
- M. Ozturk and M. Basarir, On some common fixed point theorems with rational expressions on some metric spaces, J. Math. Stat., (2) (2012) 211–222.
- S. Reich, Some remarks concering contraction mappings, Can. Math. Bull., 14 (1971) 121–124.
- S. Reich, Some fixed point problems, Atti Acad. Naz. Lincei, 57 (1974) 194–198.
- B. Samet, C. Vetro and P. Vetro, Fixed point theorems for α−ψ contraction type mappings, Non-linear Anal., 75 (2012) 2154–2165.
- T. Suzuki, Mizagushi-Takahashis fixed point theorem is a real generalization of Nadlers, J. Math. Appl., (2007).
- K. Tayab, Mizagushi-Takahashis type fixed point theorem, Computer and Math. Appl., 57 (2009) 507–511.
- D. Wardowski, Fixed points of new type of contraction mappings on complete metric space, Fixed Point Theory Appl., 94 (2012).
- H. K. Xu, Metric fixed point theory of multivalued mappings, Dissertations Math. (RozprawyMat.), 389(39) (2000).

Abstract Views: 292

PDF Views: 0