
Abstract
In this paper, the theory of fuzzy semiprimary ideal [16] is extended by introducing intuitionistic anti fuzzy primary ideals 
as well as intuitionistic anti fuzzy semiprimary ideals in rings. Similarly, Interval-Valued Intuitionistic Anti Fuzzy Lie 
Primary Ideals (IVIAFLPI) is defined. Various properties of IVIAFLPI are discussed. Finally, Interval-Valued Intuitionistic 
Fuzzy Lie Semiprimary Ideals (IVIAFLSPI) is established.
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1.  Introduction
After the introduction of Fuzzy Sets (FSs) by A. Zadeh 
[12], the fuzzy concept has been used to extend almost 
all areas of mathematics. By using FSs people have recog-
nized the theory to study uncertainty. Fuzzy mathematics 
have become a vital area of research in different applica-
tions such as engineering, medical science, social science, 
artificial intelligence, signal processing, pattern recog-
nition, computer networks, automata theory and so on. 
The notion of IFS and its operations were introduced by 
Atanassov [1], as a generalization of the concept of FS. 
Atanassov [2] discussed the operators over Interval-
Valued Intuitionistic Fuzzy Sets (IVIFSs). Palanivelrajan 
and Nandakumar [9] introduced the definition and some 
properties of intuitionistic fuzzy primary and semipri-
mary ideals [16]. 

The notion of Lie groups [13] was first introduced by 
sophus Lie in nineteenth century through his studies in 
geometry and integration methods for solving differential 
equations. Lie algebras [6] were also exposed by him when 

he attempted to categorize certain smooth subgroups of a 
general linear group. In applied mathematics Lie theory 
[13] remains a commanding tool for studying differen-
tial equations, special functions and perturbation theory. 
It is noted that Lie theory has applications in physics 
also. M. Akram. W. A. Dudek [7] discussed Interval-
valued intuitionistic fuzzy Lie ideals of Lie algebras. P. K. 
Sharma [10], discussed intuitionistic Anti fuzzy ideal and 
Quotient ring.

In this paper, interval-valued intuitionistic anti fuzzy 
lie primary ideals and anti fuzzy Lie ideals, interval-val-
ued intuitionistic anti fuzzy Lie ideals of Lie algebras are 
discussed.

2.  Preliminaries
In this section, some basic definitions which are neces-
sary for this paper are presented.

Definition 2.1 [11]
A fuzzy subset m of a ring R is called fuzzy ideal if for all 

,x y R∈  the subsequent conditions are satisfied 
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(i)			  ( ) ( )( )( )min ,x yx ym m m− ≥

(ii)			 ( ) ( )( )( )max ,xy x ym m m≥
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Definition 2.2 [14]
A fuzzy subset m of a ring R  is called anti fuzzy ideal if 
for all ,x y R∈  the subsequent conditions are satisfied

(i)			  ( ) ( )( )( )max ,x yx ym m m− ≤

(ii)			 ( ) ( ) ( )( )min ,µx µy x ym ≤ .

Definition 2.3 [14]
A fuzzy subset m  of a ring R  is called intuitionistic anti 
fuzzy ideal if for all ,x y R∈ , the subsequent conditions 
are satisfied,

(i)			  ( ) ( ) ( )( ),A A Aµ x y max µ x µ y− ≤

(ii)			 ( ) ( ) ( )( ),A A Aµ xy min µ x µ y≤

(iii)	 ( ) ( ) ( )( ) ,A A Ax y min x yg g g− ≥

(iv)	 ( ) ( ) ( )( )  ,A A Axy max x yg g g≥

Example 2.2
Let R=Z, the ring of integers under ordinary addition and 
multiplication of integers.

Define the two IFS’s A and B by 

( )A xm =
 

0.5,          3
1,       

if x is a multiple of
otherwise





( )B xm =
 

0.8,          3
0.83,  

if x is a multiple of
otherwise





and

( )A xg =
 

0.3,          3
0,       

if x is a multiple of
otherwise



  

( )B xg =
0.15,         3
0.05,   

if x is a multiple of
otherwise





It can be easily verified that A and B are IAFI of Z.

Definition 2.4
An intuitionistic anti fuzzy ideal R  of a ring R  is 
called Intuitionistic anti fuzzy primary ideal (IAFPI) 
if for all ,a b R∈  either ( ) ( )  A Aµ ab µ a=

 
and 

( ) ( ),A Aab ag g=   
or ( ) ( )  m

A Aµ ab µ b≥  and ( ) ( )m
A Aab bg g≤

 ( ) ( )m
A Aab bg g≤ , for some .m Z +∈
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Definition 2.5
An intuitionistic anti-fuzzy ideal A  of a ring R  is called 
Intuitionistic Anti Fuzzy Semiprimary Ideal (IAFSPI) 
if for all  ,  a b R∈  either ( ) ( )  n

A Aµ ab µ a≥  and 

( ) ( )  ,n
A Aab ag g≤  for some  n Z +∈  or else ( ) ( )  m

A Aµ ab µ b≥  

( ) ( )  m
A Aµ ab µ b≥  and ( ) ( )  m

A Aab bg g≤  for some 

.m Z +∈

Definition 2.6 [2]
An interval-valued fuzzy set A  is specified by a function

[ ]: 0,1 ,   AM E D→  where [ ]0,1D  is the set of all inter-

vals within [0, 1], for all ( ), Ax E M x∈  is an interval 

[ ], ,  a b where 0  1.a b≤ ≤ ≤

Definition 2.7 [2]
An interval-valued intuitionistic fuzzy set A  over E  
is defined as an object of the form ( ) ( )  , ,{ ,| } A AA x M x N x x E= ∈ 

( ) ( )  , ,{ ,| } A AA x M x N x x E= ∈  where  ( ) [ ]0,  1  AM x ⊆  and ( ) [ ]0,  1AN x ⊆  
( ) [ ]0,  1AN x ⊆  are interval and for all ,x E∈ ( ) ( )  1.A ArmaxM x rmaxN x+ ≤

 
( ) ( )  1.A ArmaxM x rmaxN x+ ≤

 
Definition 2.8
Let E1 and E2 be two universes and let

( ) ( ){ }1, , /A AA x x x x Em g= ∈ , ( ) ( ){ }2, , /B BB y y x y Em g= ∈
 

( ) ( ){ }2, , /B BB y y x y Em g= ∈
 
be two interval-valued intuitionistic fuzzy 

subsets of E1 and E2 respectively, then 

A × B ( ){  ,  , ( ( ), Amin rmAXB x y M xin rmin=

,  max(rmin N ( ),  rmin(  N ( )))) AB BM y x y

}21 /     x and y EE ∈∈

Definition 2.9

Let A  be an interval-valued intuitionistic fuzzy 
sets. A fuzzy ideal A  of a ring R  is said to be inter-
val-valued intuitionistic anti fuzzy primary ideal 
(IVIAFPI) of R  if for all  ,  a b R∈  then either 

( ) ( ) ( )       A A Aµ ab rmax M ab rmax M a= =

( ) Aµ a=  and ( ) ( ) A Aab rmax N abg =  

( )ArmaxN a= ( )A ag=  or ( )A abm  = ( ) MArmax ab   

( ) ( ) M n
A

n
Ar bmax b m≥ =  and ( ) ( )   A Aab rmax N ab rmaxg = ≤ 

( ) ( )   A Aab rmax N ab rmaxg = ≤  ( ) ( ),n n
AN b bg=  for some .n Z +∈

Definition 2.10

Let A  be an interval-valued intuitionistic fuzzy set A 
fuzzy ideal A  of a ring R  is said to be Interval-Valued 
Intuitionistic Anti Fuzzy Semiprimary Ideal (IVIAFSPI) 
of R  if for all  ,  a b R∈ then either 

( ) ( )A Aµ ab rmaxM ab= ≥  ( )n
ArmaxM a

 
( )n

Aµ a=  and ( ) ( )A Aab rmaxN abg =

( ) ( ),n n
A ArmaxN a ag≤ =  for some  

n Z +∈  ( ) Aor µ ab ( )  Armax M ab= rmax≥  

( )m
Aµ b ( )m

Aµ b=  and ( )A ab rmaxg =  

( ) ( )m
A AN ab rmaxN b≤ ( ) m

A bg= , for some 

.m Z +∈

Definition 2.11 [18]

A fuzzy set [ ]: 0,  1µ L →  is called a fuzzy Lie subalgebra 
of L if

  (i)  ( ) ( ) ( )( ) ,  µ x y min µ x µ y+ ≥

 (ii)  ( ) ( )µ ax µ x≥

(iii)  [ ]( ) ( ) ( )( ) ,   µ xy min µ x µ y≥  holds for all 

    ,x y L∈ and  Fa ∈ .

Definition 2.12 [7]
A fuzzy set [ ]: 0,  1  µ L → is called anti fuzzy Lie ideal 
of L if

  (i)  ( ) ( ) ( )( ) ,µ x y max µ x µ y+ ≤

 (ii)  ( ) ( )  µ ax µ x≤  

(iii) �  [ ]( ) ( )   µ xy µ x≤  holds for all ,x y L∈ and 

Fa ∈ .
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3. � Interval-valued Intuitionistic 
Anti Fuzzy Lie Primary Ideal

Definition 3.1
An IVIFS ,( )A AA m g=  in L is called an Interval-Valued 
Intuitionistic Anti Fuzzy Lie Ideal (IVIAFLI) of L, if the 
following conditions are satisfied.

(i) 	  ( ) ( ) max ( ), ( )A A Ax y x ym m m≤+  and

   ) min (( ( ( ))),A A Ax y x yg g g+ ≥

(ii)	 ( ) ( )A Aax xm m≤  and ( ) ( )A Aax xg g≥  

(iii) �  ( ) ( )[ ]A Ax y xm m≤+  and 
( ) ( )[ ]A Ax y xg g≥+  for all ,x y L∈ and 

 Fa ∈
Definition 3.2

Let A  be an interval-valued intuitionistic anti fuzzy Lie 
ideal of a Lie algebra L then A is said to be an Interval-Valued 
Intuitionistic Anti Fuzzy Lie Primary Ideal (IVIAFLPI) 
of L if for all ,x y L∈  then either ( ) ( )A Axy xm m=

 
and ( ) ( )A Axy xg g=

 
or ( ) ( )n

A Axy xm m≥  and 

( ) ( )n
A Axy xg g≤  for some  .n Z +∈

Definition 3.3
Let A be an IVIAFLPI of a Lie algebra L then A is 
said to Interval-Valued Intuitionistic Anti Fuzzy Lie 
Semiprimary Ideal (IVIAFLSPI) of L if for all ,x y L∈  
and for some  .n Z +∈  Either ( ) ( )n

A Axy xm m≥  and 

( ) ( )n
A Axy xg g≤  or else ( ) ( )m

A Axy ym m≥
 

and 

( )A xyg ( )m
A yg≤

 
for some  .m Z +∈ 	

Theorem 3.1 [13] [17]

If ( , )A AA m g=  is an IVIAFLPI of a lie algebra L, then 
the anti level subset ( ) ( , ) {  / }A AU L xm a a m a∈ ≤=  

and ( ) ( , } /{)A AxL L xg a g a∈ ≥=  are lie primary 

ideals of L for every  ( ) ( ) [0,1],m A m AI I Da m g∈ ⊆

 where ( )m AI m  and ( )m AI g
 
are sets of values of 

Am  and 

Ag  respectively.

Proof:

Let ( ) ( ) [0,1],m A m AI I Da m g∈ ⊆  and let 
, ( , )Ax y m a∈

 
and  ,Fa ∈  then ( )A x Im ≤ ,  

where [ ]0,1I =  and ( )A xm a≤  it follows that 

( ) ( )A Axy xm m a= ≤ ,so that , ( , )Ax y U m a∈ , conse-

quently  ( , )AU m a  IVIAFLPI of L. Let , ( , )Ax y L g a∈  

and   ,  Fa ∈  then  ( )A x Ig ≤  where [ ]  0,1  I =  and 

( )A xg a≥ , it follows that ( ) ( )A Axy xg g= , so that 
, ( , )Ax y L g a∈  consequently  ( , )AL g a  is IVIAFLPI 

of L.
Theorem 3.2 [13] [14] [16] [17]

If ( , )A AA m g=  and ( , )B BB m g=  be two IVIAFLPI of 
a Lie algebra L, then A B×  is an IVIAFLPI of L × L.

Proof:

We know that { },A A B BA B m m g g× = × ×
  where ( )( , ) max( ( ), ( ))A B A Bx y x ym m m m× =   

and ( ) ( )( , ) min ( ), ( )A B B Bx y x yg g g g× =
  

Let ( )1 2,x x x=  and ( )1 2,y y y= L L∈ ×  
Now 

( ) ( )1 2 1 2( ) ( , )( , )A B A Bxy x x y ym m m m× = ×  = 1 1 2 2( , )A B x y x ym m×

= ( )1 1 2 2max ( ), ( )A Bx y x ym m

= ( )1 2max ( ), ( )A Bx xm m

= ( ) 1 2( , )A B x xm m×

( )( )A B xm m= ×

Therefore ( ) ( )( ) ( )A B A Bxy xm m m m× = ×
Now

( ) ( )( )1 2 1 2( ) ( , )( , )A B A Bxy x x y yg g g g× = ×

= ( ) 1 1 2 2( , )A B x y x yg g×

= ( )1 1 2 2min ( ), ( )A Bx y x yg g

= ( )1 2min ( ), ( )A Bx xg g

= ( )A Bg g× )( 21x x

= ( )A Bg g× ( )x .

Therefore,( )( )A B xyg g×
 
= ( )A Bg g× ( )x  and hence 

A B×  is an IVIAFLPI of L.
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Theorem 3.3 [13] [14] [16] [18]

If ( , )A AA m g=  and ( , )B BB m g=  are IVIAFLPI on L 

then [ ],A B  is also an IVIAFLPI of L.

Proof:
Let A be an IVIAFLPI of a Lie algebra L then 

( ) ( ) A Axy xm m=  and ( ) ( ) ,A Axy xg g= , for some 
every x, y ∈ L.

Consider ,  .     x y L∈
Now

( ),A B xym m<< >> = ( ( ) ( )( ) min max ,A Br xy xym m

[ ]1/ , , , , )xy x y L xy xy xy∈ =

= ( ( ) ( )( ))min max  ,A Br x xm m

= ( ),A B xm m<< >>
Therefore,

( ),A B xym m<< >> =. ( ),A B xm m<< >>
Now

( ),A B xyg g<< >>  = ( ( ) ( )( )max min ,A Br xy xyg g

[ ]1/ , , , , )xy x y L xy xy xy∈ =

= ( ( ) ( )( ))max min ,A Br x xg g

= ( ),A B xg g<< >>
Therefore,

( ),A B xyg g<< >> = ( ),A B xg g<< >>
Therefore, [A,B] is an IVIAFLPI of L.

Theorem 3.4 [13]
If A1,A2,B1,B2 be IVIAFLPI in L such that 1 2A A⊇ and 

1 2B B⊇  then [ ] [ ]1 1 2 2,   ,  A B A B⊇ .

Proof: 
Consider ,x y L∈

Now,

( )1 1,A B xym m<< >> = ( ( ) ( )( )1 1 min max ,A Bxy yr xm m

[ ]1/ , , , , )xy x y L xy xy xy∈ =

= ( ( ) ( )( )1 1 min max ,A Bxy yr xm m

≤ ( ( ) ( )( )2 2 min max ,A Bxy yr xm m

[ ]1/ , , , , )xy x y L xy xy xy∈ =

= ( ( ) ( )( )2 2min max , A Bxr xm m

= ( )2 2,A B xm m<< >>
Therefore,

( )1 1,A B xym m<< >> = ( )2 2,A B xm m<< >>
Now

( )1 1,A B xyg g<< >> =

( ( ) ( )( )1 1max min ,A Br xy xyg g [ ]1/ , , , , )xy x y L xy xy xy∈ =

≥ ( ( ) ( )( )2 2 max min ,A Bxy yr xg g

[ ]1/ , , , , )xy x y L xy xy xy∈ =

= ( ( ) ( )( )2 2 max min ,A Bxy yr xg g

= ( )2 2,A B xg g<< >>
Therefore,

( )1 1,A B xyg g<< >> =. ( )2 2,A B xg g<< >>

Hence, [ ] [ ]1 1 2 2,   ,  A B A B⊇ . 
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