Open Access Open Access  Restricted Access Subscription Access

CIDO : Chaotically Initialized Dandelion Optimization for Global Optimization


Affiliations
1 Department of Software Engineering, Firat University, Elazig-23000, Turkey
2 Department of Computer Engineering, Malatya TurgutOzal University, Malatya-44000, Turkey
 

Metaheuristic algorithms are widely used for problems in many fields such as security, health, engineering. No metaheuristic algorithm can achieve the optimum solution for all optimization problems. For this, new metaheuristic methods are constantly being proposed and existing ones are being developed. Dandelion Optimizer, one of the most recent metaheuristic algorithms, is biology-based. Inspired by the wind-dependent long-distance flight of the ripening seed of the dandelion plant. It consists of three phases: ascending phase, descending phase and landing phase. In this study, the chaos-based version of Chaotically Initialized Dandelion Optimizer is proposed for the first time in order to prevent Dandelion Optimizer from getting stuck in local solutions and to increase its success in global search. In this way, it is aimed to increase global convergence and to prevent sticking to a local solution. While creating the initial population of the algorithm, six different Chaotically Initialized Dandelion Optimizer algorithms were presented using the Circle, Singer, Chebyshev, Gauss/Mouse, Iterative and Logistic chaotic maps. Two unimodal (Sphere and Schwefel 2.22), two multimodal (Schwefel and Rastrigin) and two fixed-dimension multimodal (Foxholes and Kowalik) quality test functions were used to compare the performances of the algorithms. When the experimental results were analyzed, it was seen that the Chaotically Initialized Dandelion Optimizer algorithms gave successful results compared to the classical Dandelion Optimizer.

Keywords

Metaheuristic Algorithms, Dandelion Optimizer, Chaos, Global Optimization.
User
Notifications
Font Size


  • CIDO : Chaotically Initialized Dandelion Optimization for Global Optimization

Abstract Views: 301  |  PDF Views: 0

Authors

Sinem Akyol
Department of Software Engineering, Firat University, Elazig-23000, Turkey
Muhammed Yildirim
Department of Computer Engineering, Malatya TurgutOzal University, Malatya-44000, Turkey
Bilal Alatas
Department of Software Engineering, Firat University, Elazig-23000, Turkey

Abstract


Metaheuristic algorithms are widely used for problems in many fields such as security, health, engineering. No metaheuristic algorithm can achieve the optimum solution for all optimization problems. For this, new metaheuristic methods are constantly being proposed and existing ones are being developed. Dandelion Optimizer, one of the most recent metaheuristic algorithms, is biology-based. Inspired by the wind-dependent long-distance flight of the ripening seed of the dandelion plant. It consists of three phases: ascending phase, descending phase and landing phase. In this study, the chaos-based version of Chaotically Initialized Dandelion Optimizer is proposed for the first time in order to prevent Dandelion Optimizer from getting stuck in local solutions and to increase its success in global search. In this way, it is aimed to increase global convergence and to prevent sticking to a local solution. While creating the initial population of the algorithm, six different Chaotically Initialized Dandelion Optimizer algorithms were presented using the Circle, Singer, Chebyshev, Gauss/Mouse, Iterative and Logistic chaotic maps. Two unimodal (Sphere and Schwefel 2.22), two multimodal (Schwefel and Rastrigin) and two fixed-dimension multimodal (Foxholes and Kowalik) quality test functions were used to compare the performances of the algorithms. When the experimental results were analyzed, it was seen that the Chaotically Initialized Dandelion Optimizer algorithms gave successful results compared to the classical Dandelion Optimizer.

Keywords


Metaheuristic Algorithms, Dandelion Optimizer, Chaos, Global Optimization.

References