





Note Sur La Conjecture De Greenberg
Subscribe/Renew Journal
We use logarithmic đ-class groups to take a new view on Greenbergâs conjecture about Iwasawa đ-invariants of a totally real number field K. By the way we recall and complete some classical results. Under Leopoldtâs conjecture, we unconditionally prove that Greenbergâs conjecture holds if and only if the logarithmic classes of K principalize in the cyclotomic â¤đ-extension. As an illustration of our approach, in the special case where the prime đ splits completely in K, we prove that the sufficient condition introduced by Gras just asserts the triviality of the logarithmic class group of K. Last, in the abelian case, we provide an explicit description of the circular class groups in connexion with the so-called weak conjecture.
User
Subscription
Login to verify subscription
Font Size
Information
- K. Belabas and J.-F. Jaulent, The logarithmic class group package in PARI/GP, Pub. Math. Besanc¸on (2016).
- T. Beliaeva and J.-R. Belliard, Indices isotypiques des ´el´ements cyclotomiques, Tokyo J. Math., 35 (2012) 139â164.
- J.-R. Belliard, Sur la structure galoisienne des unit´es circulaires dans les đŤp-extensions, J. Number Theory, 69 (1998) 16â49.
- J.-R. Belliard, Sous-modules dâunit´es en th´eorie dâIwasawa, Pub. Math. Besanc¸on (2002).
- F. Diaz y Diaz, J.-F. Jaulent, S. Pauli, M. E. Pohst and F. Soriano, A new algorithm for the computation of logarithmic class groups of number fields, Experimental Math., 14 (2005) 67â76.
- T. Fukuda, Greenbergâs conjecture and relative unit groups for real quadratic fields, J. Numb. Th, 65 (1997) 23â9.
- T. Fukuda, Cyclotomic Units and Greenbergâs Conjecture for Real Quadratic Fields, Math. Comp., 65 (1996) 1339â1348.
- T. Fukuda and K. Komatsu, On đŤp-extensions of real quadratic fields, J. Math. Soc. Japan, 38 (1986) 95â102.
- T. Fukuda and H. Taya, The Iwasawa Îť-invariants of đŤp-extensions of real quadratic fields, Acta Arith., 69 (1995) 277â292.
- G. Gras, Class field theory : from theory to practice, Springer Monographs in Mathematics (2005).
- G. Gras, Les θ-r´egulateurs locaux dâun nombre alg´ebrique : conjectures p-adiques, Canadian J. Math., 68 (2016) 571â624.
- G. Gras, Approche p-adique de la conjecture de Greenberg pour les corps totalement r´eels, Annales Math´ematiques Blaise Pascal (2017).
- G. Gras and J.-F. Jaulent, Sur les corps de nombres r´eguliers, Math. Z., 202 (1989) 343â365.
- R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math., 98 (1976) 263â284.
- C. Greither, Sur les normes universelles dans les đŤp-extensions, J. Th´eor. Nombres Bordeaux, 6 (1994) 205â220.
- J.-F. Jaulent, Classes logarithmiques des corps de nombres, J. Th´eor. Nombres Bordeaux, 6 (1994) 301â325.
- J.-F. Jaulent, Theorie đ-adique globale du corps de classes, J. Theor. Nombres Bordeaux, 10 (1998) 355â397.
- J.-F. Jaulent, Classes logarithmiques des corps totalement r´eels, Acta Arithmetica, 103 (2002) 1â7.
- J.-F. Jaulent, Sur les normes cyclotomiques et les conjectures de Leopoldt et de Gross-Kuzâmin, Annales Math. Qu´ebec, 41 (2017) 119â140.
- J.-F. Jaulent, Sur la capitulation pour le module de Bertrandias-Payan, Pub. Math. Besanc¸on (2016) 45â58.
- J.-F. Jaulent, Normes cyclotomiques na¨Ĺves et unit´es logarithmiques, Archiv der Math., 108 (2017) 545â554.
- J.-F. Jaulent and A. Michel, Approche logarithmique des noyaux ´etales sauvages des corps de nombres, J. Numb. Th., 120 (2006) 72â91.
- J.-F. Jaulent and T. Nguyen Quang Do, Corps p-r´eguliers, corps p-rationnels et ramification restreinte, J. Th´eor. Nombres Bordeaux, 5 (1993) 343â363.
- L. V. Kuzâmin, The Tate module of algebraic number fields, Izv. Akad. Nauk SSSR, 36 (1972) 267â327.
- M. Le Flocâh, A. Movahhedi and T. Nguyen Quang Do, On capitulation cokernels in Iwasawa Theory, Am. J. Math., 127 (2005) 851â877.
- A. Movahhedi, Sur les p-extensions des corps p-rationnels, Math. Nachr., 149 (1990) 163â176.
- A. Movahhedi and T. Nguyen Quang Do, Sur lâarithm´etique des corps de nombres p-rationnels, S´em. Th. Nombres Paris (1987/1988), Prog. in Math., 89 (1990) 155â200.
- T. Nguyen Quang Do, Sur la conjecture faible de Greenberg dans le cas abelien p-d´ecompos´e, Int. J. Number Theory, 2 (2006) 49â4.
- T. Nguyen Quang Do, Sur une forme faible de la conjecture de Greenberg II, Int. J. Number Theory, 13 (2017) 1061â1070.
- T. Nguyen Quang Do, Formule des genres et conjecture de Greenberg, Prepublication (2017) ; Annales Math. Quebec (`a paraÄątre).
- T. Nguyen Quang Do and M. Lescop, with an appendix by J.-R. Belliard, Iwasawa descent and co-descent for units modulo circular units, Pure Appl. Math. Quart., 2 (2006) 465â496.
- M. Ozaki, The class group of đŤp-extensions over totally real fields, TËohoku Math. J., 49 (1997) 431â435.
- W. Sinnott, On the Stickelberger ideal and the circular units of an abelian number field, Inv. Math., 62 (1980) 181â234.
- M. Ozaki and H. Taya, A note on Greenbergâs conjecture for real abelian number fields, Manuscripta Math., 88 (1995) 311â20.
- H. Taya, On p-adic zeta functions and đŤp-extensions of certain totally real number fields, TËohoku Math. J., 51 (1999), 21â33.

Abstract Views: 430

PDF Views: 0